"They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations
- URL: http://arxiv.org/abs/2405.05378v1
- Date: Wed, 8 May 2024 19:08:45 GMT
- Title: "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations
- Authors: Preetam Prabhu Srikar Dammu, Hayoung Jung, Anjali Singh, Monojit Choudhury, Tanushree Mitra,
- Abstract summary: Large language models (LLMs) have emerged as an integral part of modern societies.
Despite their utility, research indicates that LLMs perpetuate systemic biases.
We introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature.
- Score: 15.535416139394009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have emerged as an integral part of modern societies, powering user-facing applications such as personal assistants and enterprise applications like recruitment tools. Despite their utility, research indicates that LLMs perpetuate systemic biases. Yet, prior works on LLM harms predominantly focus on Western concepts like race and gender, often overlooking cultural concepts from other parts of the world. Additionally, these studies typically investigate "harm" as a singular dimension, ignoring the various and subtle forms in which harms manifest. To address this gap, we introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature. We utilize evaluation models aligned with human assessments to examine the presence of covert harms in LLM-generated conversations, particularly in the context of recruitment. Our experiments reveal that seven out of the eight LLMs included in this study generated conversations riddled with CHAST, characterized by malign views expressed in seemingly neutral language unlikely to be detected by existing methods. Notably, these LLMs manifested more extreme views and opinions when dealing with non-Western concepts like caste, compared to Western ones such as race.
Related papers
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Are Social Sentiments Inherent in LLMs? An Empirical Study on Extraction of Inter-demographic Sentiments [14.143299702954023]
This study focuses on social groups defined in terms of nationality, religion, and race/ethnicity.
We input questions regarding sentiments from one group to another into LLMs, apply sentiment analysis to the responses, and compare the results with social surveys.
arXiv Detail & Related papers (2024-08-08T08:13:25Z) - A Taxonomy of Stereotype Content in Large Language Models [4.4212441764241]
This study introduces a taxonomy of stereotype content in contemporary large language models (LLMs)
We identify 14 stereotype dimensions (e.g., Morality, Ability, Health, Beliefs, Emotions) accounting for 90% of LLM stereotype associations.
Our findings suggest that high-dimensional human stereotypes are reflected in LLMs and must be considered in AI auditing and debiasing to minimize unidentified harms.
arXiv Detail & Related papers (2024-07-31T21:14:41Z) - How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies [0.0]
Commercial model development has focused efforts on'safety' training concerning legal liabilities at the expense of social impact evaluation.
This mimics a similar trend which we could observe for search engine autocompletion some years prior.
We present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs.
arXiv Detail & Related papers (2024-07-16T14:04:35Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - Laissez-Faire Harms: Algorithmic Biases in Generative Language Models [0.0]
We show that synthetically generated texts from five of the most pervasive LMs perpetuate harms of omission, subordination, and stereotyping for minoritized individuals.
We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs.
Our findings highlight the urgent need to protect consumers from discriminatory harms caused by language models.
arXiv Detail & Related papers (2024-04-11T05:09:03Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.