Cross-Modality Translation with Generative Adversarial Networks to Unveil Alzheimer's Disease Biomarkers
- URL: http://arxiv.org/abs/2405.05462v1
- Date: Wed, 8 May 2024 23:38:02 GMT
- Title: Cross-Modality Translation with Generative Adversarial Networks to Unveil Alzheimer's Disease Biomarkers
- Authors: Reihaneh Hassanzadeh, Anees Abrol, Hamid Reza Hassanzadeh, Vince D. Calhoun,
- Abstract summary: Generative approaches for cross-modality transformation have recently gained significant attention in neuroimaging.
We employed a cycle-GAN to synthesize data in an unpaired data transition and enhanced the transition by integrating weak supervision in cases where paired data were available.
Our findings revealed that our model could offer remarkable capability, achieving a structural similarity index measure (SSIM) of $0.89 pm 0.003$ for T1s and a correlation of 0.71 pm 0.004$ for FNCs.
- Score: 13.798027995003908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative approaches for cross-modality transformation have recently gained significant attention in neuroimaging. While most previous work has focused on case-control data, the application of generative models to disorder-specific datasets and their ability to preserve diagnostic patterns remain relatively unexplored. Hence, in this study, we investigated the use of a generative adversarial network (GAN) in the context of Alzheimer's disease (AD) to generate functional network connectivity (FNC) and T1-weighted structural magnetic resonance imaging data from each other. We employed a cycle-GAN to synthesize data in an unpaired data transition and enhanced the transition by integrating weak supervision in cases where paired data were available. Our findings revealed that our model could offer remarkable capability, achieving a structural similarity index measure (SSIM) of $0.89 \pm 0.003$ for T1s and a correlation of $0.71 \pm 0.004$ for FNCs. Moreover, our qualitative analysis revealed similar patterns between generated and actual data when comparing AD to cognitively normal (CN) individuals. In particular, we observed significantly increased functional connectivity in cerebellar-sensory motor and cerebellar-visual networks and reduced connectivity in cerebellar-subcortical, auditory-sensory motor, sensory motor-visual, and cerebellar-cognitive control networks. Additionally, the T1 images generated by our model showed a similar pattern of atrophy in the hippocampal and other temporal regions of Alzheimer's patients.
Related papers
- Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor neural activity.
Deep learning has shown promise in capturing these representations.
In this study, we focus on time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation.
arXiv Detail & Related papers (2024-10-30T23:51:31Z) - Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities.
We leveraged structural and functional MRI to investigate the disease-induced GM and functional network connectivity changes.
We propose a novel DL-based classification framework where a generative module employing Cycle GAN was adopted for imputing missing data.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Structure Guided Manifolds for Discovery of Disease Characteristics [5.336635180224786]
DiDiGAN is a weakly-supervised framework for discovering and visualising subtle disease features.
It was tested on the Alzheimer's Disease Neuroimaging Initiative dataset.
arXiv Detail & Related papers (2022-09-22T13:50:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.