論文の概要: Poser: Unmasking Alignment Faking LLMs by Manipulating Their Internals
- arxiv url: http://arxiv.org/abs/2405.05466v1
- Date: Wed, 8 May 2024 23:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:32:26.009890
- Title: Poser: Unmasking Alignment Faking LLMs by Manipulating Their Internals
- Title(参考訳): ポザー:内部を操作してLSMを偽装するアライメント
- Authors: Joshua Clymer, Caden Juang, Severin Field,
- Abstract要約: 324組のLarge Language Models (LLM) からなるベンチマークを導入する。
各ペアの1つのモデルは一貫して良性(整列)である
他のモデルは、捕らえられそうにないシナリオ(アライメント・フェイキング)で間違った振る舞いをする
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Like a criminal under investigation, Large Language Models (LLMs) might pretend to be aligned while evaluated and misbehave when they have a good opportunity. Can current interpretability methods catch these 'alignment fakers?' To answer this question, we introduce a benchmark that consists of 324 pairs of LLMs fine-tuned to select actions in role-play scenarios. One model in each pair is consistently benign (aligned). The other model misbehaves in scenarios where it is unlikely to be caught (alignment faking). The task is to identify the alignment faking model using only inputs where the two models behave identically. We test five detection strategies, one of which identifies 98% of alignment-fakers.
- Abstract(参考訳): 捜査中の犯罪者のように、LLM(Large Language Models)は、良い機会があるときに評価され、誤った振る舞いをしているふりをするかもしれない。
現在の解釈可能性法はこれらの「アライメントフェイカー」をキャッチできるのか?
そこで本研究では,ロールプレイシナリオにおけるアクション選択のために微調整された324組のLLMからなるベンチマークを提案する。
各ペアの1つのモデルは一貫して良性(整列)である。
他のモデルでは、捕らえられそうにないシナリオ(アライメント・フェイキング)で誤動作します。
この課題は、2つのモデルが同一に振る舞う入力のみを用いてアライメントフェイキングモデルを特定することである。
我々は5つの検出戦略を検証し、そのうちの1つはアライメントフェイカーの98%を識別する。
関連論文リスト
- Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
大規模言語モデル(LLM)は、出力の信頼性が不可欠である様々な高い領域で採用されている。
本研究では,不確実性推定の脆弱性を調査し,攻撃の可能性を探る。
攻撃者がLSMにバックドアを埋め込むことができ、入力中の特定のトリガーによって起動されると、最終的な出力に影響を与えることなくモデルの不確実性を操作できることを示す。
論文 参考訳(メタデータ) (2024-07-15T23:41:11Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - PARDEN, Can You Repeat That? Defending against Jailbreaks via Repetition [10.476666078206783]
大規模言語モデル(LLM)は多くの自然言語処理タスクで成功している。
Llama 2やClaude 2のような安全アライメントのLLMは、厳格な安全アライメントプロセスにもかかわらず、今でもジェイルブレイクの影響を受けやすい。
PARDENは、単にモデルに自身の出力を繰り返すように頼み、ドメインシフトを避ける。
論文 参考訳(メタデータ) (2024-05-13T17:08:42Z) - See, Say, and Segment: Teaching LMMs to Overcome False Premises [67.36381001664635]
この課題を解決するために,LMMのカスケードと共同学習手法を提案する。
得られたモデルでは、画像中に物体が存在するかどうかを検知し、その物体が存在しないかをユーザに「例」し、最終的に、対象物のマスクを出力することで「分類」を行う。
論文 参考訳(メタデータ) (2023-12-13T18:58:04Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
本研究では,複数質問とオープンエンド質問の相違点について検討した。
ジェイルブレイク攻撃パターンの研究にインスパイアされた我々は、これが不一致の一般化によって引き起こされたと論じている。
論文 参考訳(メタデータ) (2023-11-10T08:01:23Z) - Can LLMs Follow Simple Rules? [28.73820874333199]
ルール追従言語評価シナリオ(ルール追従言語評価シナリオ、RuLES)は、大規模言語モデルにおけるルール追従能力を測定するためのフレームワークである。
RuLESは14の単純なテキストシナリオで構成され、そこではモデルがユーザと対話しながら様々なルールに従うように指示される。
現在のほとんどのモデルは、単純なテストケースであっても、シナリオルールに従うのに苦労しています。
論文 参考訳(メタデータ) (2023-11-06T08:50:29Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
本稿では,事前学習された視覚言語モデルの埋め込みに対する確率分布を推定する確率的アダプタProbVLMを提案する。
本稿では,検索タスクにおける不確実性埋め込みのキャリブレーションを定量化し,ProbVLMが他の手法よりも優れていることを示す。
本稿では,大規模な事前学習型潜伏拡散モデルを用いて,埋め込み分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-01T18:16:06Z) - Fundamental Limitations of Alignment in Large Language Models [16.393916864600193]
人間と対話する言語モデルを開発する上で重要な側面は、その行動が有用で有害であるように整列することである。
これは通常、望ましい振る舞いを高め、望ましくない振る舞いを抑制する方法でモデルをチューニングすることで達成される。
本研究では,行動予測境界 (BEB) と呼ばれる理論的手法を提案する。
論文 参考訳(メタデータ) (2023-04-19T17:50:09Z) - Simulated Adversarial Testing of Face Recognition Models [53.10078734154151]
本稿では,シミュレータを用いて機械学習アルゴリズムの検証方法を学ぶためのフレームワークを提案する。
実データでトレーニングされたモデルの弱点が、シミュレーションサンプルを使って発見できることを示すのはこれが初めてである。
論文 参考訳(メタデータ) (2021-06-08T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。