Twisting factors and fixed-time models in quantum field theory
- URL: http://arxiv.org/abs/2405.05603v2
- Date: Tue, 15 Oct 2024 07:27:24 GMT
- Title: Twisting factors and fixed-time models in quantum field theory
- Authors: Ezio Vasselli,
- Abstract summary: We construct a class of fixed-time models in which the commutations relations of a Dirac field with a bosonic field are non-trivial.
When the twisting factor is the Coulomb potential, the bosonic field contributes to the divergence of an electric field and its Laplacian generates local gauge transformations of the Dirac field.
- Score: 0.0
- License:
- Abstract: We construct a class of fixed-time models in which the commutations relations of a Dirac field with a bosonic field are non-trivial and depend on the choice of a given distribution ("twisting factor"). If the twisting factor is fundamental solution of a differential operator, then applying the differential operator to the bosonic field yields a generator of the local gauge transformations of the Dirac field. Charged vectors generated by the Dirac field define states of the bosonic field which in general are not local excitations of the given reference state. The Hamiltonian density of the bosonic field presents a non-trivial interaction term: besides creating and annihilating bosons, it acts on momenta of fermionic wave functions. When the twisting factor is the Coulomb potential, the bosonic field contributes to the divergence of an electric field and its Laplacian generates local gauge transformations of the Dirac field. In this way we get a fixed-time model fulfilling the equal time commutation relations of the interacting Coulomb gauge.
Related papers
- Finite temperature fermionic charge and current densities in conical space with a circular edge [0.0]
We study the finite temperature and edge induced effects on the charge and current densities for a massive spinor field localized on a 2D conical space threaded by a magnetic flux.
arXiv Detail & Related papers (2024-11-04T08:41:37Z) - Finite time path field theory perturbative methods for local quantum spin chain quenches [0.0]
We discuss local magnetic field quenches using perturbative methods of finite time path field theory.
We show how to: i) calculate the basic "bubble" diagram in the Loschmidt echo of a quenched chain to any order in the perturbation; ii) resum the generalized Schwinger-Dyson equation for the fermion two point retarded functions in the "bubble" diagram.
arXiv Detail & Related papers (2024-09-05T18:00:08Z) - Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Fermionic condensate and the vacuum energy-momentum tensor for planar fermions in homogeneous electric and magnetic fields [0.0]
We consider a massive fermionic quantum field localized on a plane in external constant and homogeneous electric and magnetic fields.
The complete set of solutions to the Dirac equation is presented.
arXiv Detail & Related papers (2023-06-20T09:18:43Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Pseudo-Hermitian Dirac operator on the torus for massless fermions under
the action of external fields [0.0]
The Dirac equation in $(2+1)$ dimensions on the toroidal surface is studied for a massless fermion particle under the action of external fields.
The Dirac operator stemming from a metric related to the strain tensor is discussed within the Pseudo-Hermitian operator theory.
arXiv Detail & Related papers (2021-09-23T02:42:09Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Dirac Particle with Memory: Proper Time Non-Locality [0.0]
A generalization of the standard model of Dirac particle in external electromagnetic field is proposed.
The behavior of the particle at proper time can depend not only at the present time, but also on the history of changes on finite time interval.
arXiv Detail & Related papers (2020-02-20T20:14:01Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.