Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems
- URL: http://arxiv.org/abs/2405.05611v2
- Date: Fri, 13 Sep 2024 09:40:02 GMT
- Title: Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems
- Authors: Amin Aminifar, Matin Shokri, Amir Aminifar,
- Abstract summary: We propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure.
We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform.
- Score: 4.082799056366928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) algorithms are generally designed for scenarios in which all data is stored in one data center, where the training is performed. However, in many applications, e.g., in the healthcare domain, the training data is distributed among several entities, e.g., different hospitals or patients' mobile devices/sensors. At the same time, transferring the data to a central location for learning is certainly not an option, due to privacy concerns and legal issues, and in certain cases, because of the communication and computation overheads. Federated Learning (FL) is the state-of-the-art collaborative ML approach for training an ML model across multiple parties holding local data samples, without sharing them. However, enabling learning from distributed data over such edge Internet of Things (IoT) systems (e.g., mobile-health and wearable technologies, involving sensitive personal/medical data) in a privacy-preserving fashion presents a major challenge mainly due to their stringent resource constraints, i.e., limited computing capacity, communication bandwidth, memory storage, and battery lifetime. In this paper, we propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure. We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform based on the seizure detection application in epilepsy monitoring using wearable technologies.
Related papers
- EPIC: Enhancing Privacy through Iterative Collaboration [4.199844472131922]
Traditional machine learning techniques require centralized data collection and processing.
Privacy, ownership, and stringent regulation issues exist when pooling medical data into centralized storage.
The Federated learning (FL) approach overcomes such issues by setting up a central aggregator server and a shared global model.
arXiv Detail & Related papers (2024-11-07T20:10:34Z) - Blockchain Integrated Federated Learning in Edge-Fog-Cloud Systems for IoT based Healthcare Applications A Survey [18.36339203254509]
Federated learning, a new distributed paradigm, supports collaborative learning while preserving privacy.
The integration of federated learning and blockchain is particularly advantageous for handling sensitive data, such as in healthcare.
This survey article explores the architecture, structure, functions, and characteristics of federated learning and blockchain, their applications in various computing paradigms, and evaluates their implementations in healthcare.
arXiv Detail & Related papers (2024-06-08T16:36:48Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - IoT Federated Blockchain Learning at the Edge [14.689706366051956]
We propose a distributed federated learning framework for IoT devices, more specifically for IoMT (Internet of Medical Things)
We use blockchain to allow for a decentralized scheme improving privacy and efficiency over a centralized system.
The system is designed for three paradigms: 1) Training neural networks on IoT devices to allow for collaborative training of a shared model whilst decoupling the learning from the dataset to ensure privacy.
arXiv Detail & Related papers (2023-04-06T11:32:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.