論文の概要: Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning
- arxiv url: http://arxiv.org/abs/2405.05615v1
- Date: Thu, 9 May 2024 08:23:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:52:35.658880
- Title: Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning
- Title(参考訳): 高能率ビジョンランゲージファインチューニングのためのメモリ空間ビジュアルプロンプティング
- Authors: Shibo Jie, Yehui Tang, Ning Ding, Zhi-Hong Deng, Kai Han, Yunhe Wang,
- Abstract要約: 大規模視覚言語(VL)モデルを効率的に構築するための現在のソリューションは、2段階のパラダイムに従う。
視覚情報に関連するタスクに対処する際の言語モデルを容易にする追加知識として視覚的プロンプトを考察する。
本稿では,視覚的知識注入のためのFFNの重み付けにより視覚的プロンプトを記憶する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 59.13366859237086
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Current solutions for efficiently constructing large vision-language (VL) models follow a two-step paradigm: projecting the output of pre-trained vision encoders to the input space of pre-trained language models as visual prompts; and then transferring the models to downstream VL tasks via end-to-end parameter-efficient fine-tuning (PEFT). However, this paradigm still exhibits inefficiency since it significantly increases the input length of the language models. In this paper, in contrast to integrating visual prompts into inputs, we regard visual prompts as additional knowledge that facilitates language models in addressing tasks associated with visual information. Motivated by the finding that Feed-Forward Network (FFN) of language models acts as "key-value memory", we introduce a novel approach termed memory-space visual prompting (MemVP), wherein visual prompts are concatenated with the weights of FFN for visual knowledge injection. Experimental results across various VL tasks and language models reveal that MemVP significantly reduces the training time and inference latency of the finetuned VL models and surpasses the performance of previous PEFT methods. Code: https://github.com/JieShibo/MemVP
- Abstract(参考訳): 事前学習されたビジョンエンコーダの出力を、事前学習された言語モデルの入力空間に視覚的プロンプトとして投影し、その後、エンド・ツー・エンドのパラメータ・エフェクト・ファインタニング(PEFT)を介して、下流のVLタスクにモデルを転送する。
しかし、このパラダイムは言語モデルの入力長を著しく増加させるため、依然として非効率である。
本稿では,視覚的プロンプトを入力に組み込むのに対し,視覚的プロンプトを視覚情報に関連するタスクに対処する際の言語モデルを容易にする追加知識とみなす。
言語モデルのFeed-Forward Network(FFN)が"key-value memory"(キーバリューメモリ)として機能していることに触発され、視覚的インプロンプトとFFNの重みを結合したメモリ空間視覚プロンプト(MemVP)と呼ばれる新しいアプローチを導入する。
様々なVLタスクや言語モデルに対する実験結果から、MemVPは微調整されたVLモデルのトレーニング時間と推論遅延を著しく低減し、従来のPEFTメソッドのパフォーマンスをはるかに上回ることがわかった。
コード:https://github.com/JieShibo/MemVP
関連論文リスト
- Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
大規模視覚言語モデル(LVLM)は様々な視覚言語タスクにおいて印象的な成果を上げている。
LVLMは言語バイアスによる幻覚に悩まされ、画像や非効果的な視覚的理解に焦点が当てられなくなった。
MDA (Multimodal duAl-attention meChanIsm) aNd soft-image Guidance (IFG) を用いたLVLMの言語バイアスに対処するためのLACingを提案する。
論文 参考訳(メタデータ) (2024-11-21T16:33:30Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - A-VL: Adaptive Attention for Large Vision-Language Models [10.027871150748956]
LVLM(Large Vision-Language Model)は、コンピュータビジョンと自然言語処理技術を統合し、アプリケーションの可能性を高める。
現在の適応アダプティブアテンション手法はトランスフォーマーベースの言語モデルのメモリ要求を大幅に削減する。
我々は、LVLMがリモート画像トークンとローカルテキストトークンの両方から応答を生成し、異なるモダリティが異なる注意パターンを持つのを観察した。
LVLM推論に適したプラグアンドプレイ適応型アダプティブアテンションであるA-VLを開発した。
論文 参考訳(メタデータ) (2024-09-23T09:22:59Z) - Improving the Efficiency of Visually Augmented Language Models [5.948051066733892]
本稿では,LMを視覚的に拡張するために明示的な画像は必要ないことを示す。
代わりに、よく知られたCLIPマルチモーダルシステムから得られる視覚的なテキスト表現を使用する。
BLIND-VALMは、VALM for Visual Language Understanding (VLU)、Natural Language Understanding (NLU)、Language Modelingタスクと同等に動作することを示す。
論文 参考訳(メタデータ) (2024-09-17T13:02:19Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - Adapting Pre-trained Language Models to Vision-Language Tasks via
Dynamic Visual Prompting [83.21164539349273]
事前学習型言語モデル (PLM) はマルチメディア研究においてその役割を担っている。
本稿では,視覚言語推論タスクのスタンドアロンモデルとしてのPLMの探索に焦点をあてる。
ダイナミックビジュアル・プロンプティング(DVP)と呼ばれるPLMのための新しいトランスファー学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T07:19:28Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) は、視覚知覚タスクにおいて、事前訓練されたテキスト・画像拡散モデルの意味情報を利用する新しいフレームワークである。
本稿では,提案したVPDを用いて,下流の視覚的タスクに迅速に適応できることを示す。
論文 参考訳(メタデータ) (2023-03-03T18:59:47Z) - PEVL: Position-enhanced Pre-training and Prompt Tuning for
Vision-language Models [127.17675443137064]
PEVLを導入し、明示的なオブジェクト位置モデリングによる視覚言語モデルの事前学習と迅速なチューニングを促進する。
PEVLは、統一言語モデリングフレームワークにおいて、離散化されたオブジェクトの位置と言語を再構成する。
PEVLは,表現理解や句の接頭など,位置感性のあるタスクに対して,最先端のパフォーマンスを実現することができることを示す。
論文 参考訳(メタデータ) (2022-05-23T10:17:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。