Outlier-robust Kalman Filtering through Generalised Bayes
- URL: http://arxiv.org/abs/2405.05646v2
- Date: Tue, 28 May 2024 07:03:49 GMT
- Title: Outlier-robust Kalman Filtering through Generalised Bayes
- Authors: Gerardo Duran-Martin, Matias Altamirano, Alexander Y. Shestopaloff, Leandro Sánchez-Betancourt, Jeremias Knoblauch, Matt Jones, François-Xavier Briol, Kevin Murphy,
- Abstract summary: We derive a novel, provably robust, and closed-form Bayesian update rule for online filtering in state-space models.
Our method matches or outperforms other robust filtering methods at a much lower computational cost.
- Score: 45.51425214486509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive a novel, provably robust, and closed-form Bayesian update rule for online filtering in state-space models in the presence of outliers and misspecified measurement models. Our method combines generalised Bayesian inference with filtering methods such as the extended and ensemble Kalman filter. We use the former to show robustness and the latter to ensure computational efficiency in the case of nonlinear models. Our method matches or outperforms other robust filtering methods (such as those based on variational Bayes) at a much lower computational cost. We show this empirically on a range of filtering problems with outlier measurements, such as object tracking, state estimation in high-dimensional chaotic systems, and online learning of neural networks.
Related papers
- Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability [59.758009422067]
We propose a standalone Kalman filter layer that performs closed-form Gaussian inference in linear state-space models.
Similar to efficient linear recurrent layers, the Kalman filter layer processes sequential data using a parallel scan.
Experiments show that Kalman filter layers excel in problems where uncertainty reasoning is key for decision-making, outperforming other stateful models.
arXiv Detail & Related papers (2024-09-25T11:22:29Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Implicit Maximum a Posteriori Filtering via Adaptive Optimization [4.767884267554628]
We frame the standard Bayesian filtering problem as optimization over a time-varying objective.
We show that our framework results in filters that are effective, robust, and scalable to high-dimensional systems.
arXiv Detail & Related papers (2023-11-17T15:30:44Z) - An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems [10.997994515823798]
We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems.
Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation.
EnSF provides surprising performance, compared with the state-of-the-art Local Ensemble Transform Kalman Filter method.
arXiv Detail & Related papers (2023-09-02T16:48:02Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Tensor Network Kalman Filtering for Large-Scale LS-SVMs [17.36231167296782]
Least squares support vector machines are used for nonlinear regression and classification.
A framework based on tensor networks and the Kalman filter is presented to alleviate the demanding memory and computational complexities.
Results show that our method can achieve high performance and is particularly useful when alternative methods are computationally infeasible.
arXiv Detail & Related papers (2021-10-26T08:54:03Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.