Aux-NAS: Exploiting Auxiliary Labels with Negligibly Extra Inference Cost
- URL: http://arxiv.org/abs/2405.05695v1
- Date: Thu, 9 May 2024 11:50:19 GMT
- Title: Aux-NAS: Exploiting Auxiliary Labels with Negligibly Extra Inference Cost
- Authors: Yuan Gao, Weizhong Zhang, Wenhan Luo, Lin Ma, Jin-Gang Yu, Gui-Song Xia, Jiayi Ma,
- Abstract summary: We aim at exploiting additional auxiliary labels from an independent (auxiliary) task to boost the primary task performance.
Our method is architecture-based with a flexible asymmetric structure for the primary and auxiliary tasks.
Experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets using VGG, ResNet, and ViT backbones validate the promising performance.
- Score: 73.28626942658022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim at exploiting additional auxiliary labels from an independent (auxiliary) task to boost the primary task performance which we focus on, while preserving a single task inference cost of the primary task. While most existing auxiliary learning methods are optimization-based relying on loss weights/gradients manipulation, our method is architecture-based with a flexible asymmetric structure for the primary and auxiliary tasks, which produces different networks for training and inference. Specifically, starting from two single task networks/branches (each representing a task), we propose a novel method with evolving networks where only primary-to-auxiliary links exist as the cross-task connections after convergence. These connections can be removed during the primary task inference, resulting in a single-task inference cost. We achieve this by formulating a Neural Architecture Search (NAS) problem, where we initialize bi-directional connections in the search space and guide the NAS optimization converging to an architecture with only the single-side primary-to-auxiliary connections. Moreover, our method can be incorporated with optimization-based auxiliary learning approaches. Extensive experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets using VGG, ResNet, and ViT backbones validate the promising performance. The codes are available at https://github.com/ethanygao/Aux-NAS.
Related papers
- Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - Efficient Transfer Learning via Joint Adaptation of Network Architecture
and Weight [66.8543732597723]
Recent worksin neural architecture search (NAS) can aid transfer learning by establishing sufficient network search space.
We propose a novel framework consisting of two modules, the neural architecturesearch module for architecture transfer and the neural weight search module for weight transfer.
These two modules conduct search on thetarget task based on a reduced super-networks, so we only need to trainonce on the source task.
arXiv Detail & Related papers (2021-05-19T08:58:04Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
arXiv Detail & Related papers (2021-03-02T06:30:51Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
Training neural networks with auxiliary tasks is a common practice for improving the performance on a main task of interest.
Here, we propose a novel framework, AuxiLearn, that targets both challenges based on implicit differentiation.
First, when useful auxiliaries are known, we propose learning a network that combines all losses into a single coherent objective function.
Second, when no useful auxiliary task is known, we describe how to learn a network that generates a meaningful, novel auxiliary task.
arXiv Detail & Related papers (2020-06-22T19:35:07Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.