Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning
- URL: http://arxiv.org/abs/2103.01495v1
- Date: Tue, 2 Mar 2021 06:30:51 GMT
- Title: Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning
- Authors: Wonyong Jeong, Hayeon Lee, Gun Park, Eunyoung Hyung, Jinheon Baek,
Sung Ju Hwang
- Abstract summary: We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
- Score: 34.27089256930098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most conventional Neural Architecture Search (NAS) approaches are limited in
that they only generate architectures (network topologies) without searching
for optimal parameters. While some NAS methods handle this issue by utilizing a
supernet trained on a large-scale dataset such as ImageNet, they may be
suboptimal if the target tasks are highly dissimilar from the dataset the
supernet is trained on. To tackle this issue, we propose a novel neural network
retrieval method, which retrieves the most optimal pre-trained network for a
given task and constraints (e.g. number of parameters) from a model zoo. We
train this framework by meta-learning a cross-modal latent space with
contrastive loss, to maximize the similarity between a dataset and a network
that obtains high performance on it, and minimize the similarity between an
irrelevant dataset-network pair. We validate the efficacy of our method on ten
real-world datasets, against existing NAS baselines. The results show that our
method instantly retrieves networks that outperforms models obtained with the
baselines with significantly fewer training steps to reach the target
performance.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints.
We aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem.
arXiv Detail & Related papers (2023-03-23T21:30:29Z) - Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation [24.44521525130034]
We introduce a new performance estimation metric named Random-Weight Evaluation (RWE) to quantify the quality of CNNs.
RWE only trains its last layer and leaves the remainders with randomly weights, which results in a single network evaluation in seconds.
Our proposed method obtains a set of efficient models with state-of-the-art performance in two real-world search spaces.
arXiv Detail & Related papers (2021-10-08T06:35:20Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - SpaceNet: Make Free Space For Continual Learning [15.914199054779438]
We propose a novel architectural-based method referred as SpaceNet for class incremental learning scenario.
SpaceNet trains sparse deep neural networks from scratch in an adaptive way that compresses the sparse connections of each task in a compact number of neurons.
Experimental results show the robustness of our proposed method against catastrophic forgetting old tasks and the efficiency of SpaceNet in utilizing the available capacity of the model.
arXiv Detail & Related papers (2020-07-15T11:21:31Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - Neural Architecture Transfer [20.86857986471351]
Existing approaches require one complete search for each deployment specification of hardware or objective.
We propose Neural Architecture Transfer (NAT) to overcome this limitation.
NAT is designed to efficiently generate task-specific custom models that are competitive under multiple conflicting objectives.
arXiv Detail & Related papers (2020-05-12T15:30:36Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search [76.9225014200746]
Efficient search is a core issue in Neural Architecture Search (NAS)
We present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner.
It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint.
arXiv Detail & Related papers (2020-03-27T17:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.