Learned feature representations are biased by complexity, learning order, position, and more
- URL: http://arxiv.org/abs/2405.05847v2
- Date: Thu, 6 Jun 2024 15:22:31 GMT
- Title: Learned feature representations are biased by complexity, learning order, position, and more
- Authors: Andrew Kyle Lampinen, Stephanie C. Y. Chan, Katherine Hermann,
- Abstract summary: We explore surprising dissociations between representation and computation.
We train various deep learning architectures to compute multiple abstract features about their inputs.
We find that their learned feature representations are systematically biased towards representing some features more strongly than others.
- Score: 4.529707672004383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability $-$ or for comparing the representations of models and brains $-$ disentangling extraneous biases from the computationally important aspects of a system's internal representations.
Related papers
- When Representations Align: Universality in Representation Learning Dynamics [8.188549368578704]
We derive an effective theory of representation learning under the assumption that the encoding map from input to hidden representation and the decoding map from representation to output are arbitrary smooth functions.
We show through experiments that the effective theory describes aspects of representation learning dynamics across a range of deep networks with different activation functions and architectures.
arXiv Detail & Related papers (2024-02-14T12:48:17Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
We provide the definition of what we call functionally equivalent features.
These features produce equivalent output under certain transformations.
We propose an efficient algorithm named Iterative Feature Merging.
arXiv Detail & Related papers (2023-10-10T16:27:12Z) - Learning sparse features can lead to overfitting in neural networks [9.2104922520782]
We show that feature learning can perform worse than lazy training.
Although sparsity is known to be essential for learning anisotropic data, it is detrimental when the target function is constant or smooth.
arXiv Detail & Related papers (2022-06-24T14:26:33Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
We introduce a simple architecture based on similarity-distribution scores which we name Compositional Network generalization (CoRelNet)
We find that simple architectural choices can outperform existing models in out-of-distribution generalizations.
arXiv Detail & Related papers (2022-06-09T16:24:01Z) - A Theoretical Analysis on Feature Learning in Neural Networks: Emergence
from Inputs and Advantage over Fixed Features [18.321479102352875]
An important characteristic of neural networks is their ability to learn representations of the input data with effective features for prediction.
We consider learning problems motivated by practical data, where the labels are determined by a set of class relevant patterns and the inputs are generated from these.
We prove that neural networks trained by gradient descent can succeed on these problems.
arXiv Detail & Related papers (2022-06-03T17:49:38Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
We study how contrastive learning learns the feature representations for neural networks by analyzing its feature learning process.
We prove that contrastive learning using textbfReLU networks provably learns the desired sparse features if proper augmentations are adopted.
arXiv Detail & Related papers (2021-05-31T16:42:09Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.