Selecting the Most Conflicting Pair of Candidates
- URL: http://arxiv.org/abs/2405.05870v1
- Date: Thu, 9 May 2024 16:00:20 GMT
- Title: Selecting the Most Conflicting Pair of Candidates
- Authors: Théo Delemazure, Łukasz Janeczko, Andrzej Kaczmarczyk, Stanisław Szufa,
- Abstract summary: We study committee elections from a perspective of finding the most conflicting candidates, that is, candidates that imply the largest amount of conflict, as per voter preferences.
By proposing basic axioms to capture this objective, we show that none of the prominent multiwinner voting rules meet them.
A subsequent deepened analysis sheds more light on how they operate.
- Score: 6.838139628413773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study committee elections from a perspective of finding the most conflicting candidates, that is, candidates that imply the largest amount of conflict, as per voter preferences. By proposing basic axioms to capture this objective, we show that none of the prominent multiwinner voting rules meet them. Consequently, we design committee voting rules compliant with our desiderata, introducing conflictual voting rules. A subsequent deepened analysis sheds more light on how they operate. Our investigation identifies various aspects of conflict, for which we come up with relevant axioms and quantitative measures, which may be of independent interest. We support our theoretical study with experiments on both real-life and synthetic data.
Related papers
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Multiwinner Temporal Voting with Aversion to Change [30.15852603215344]
We study two-stage committee elections where voters have dynamic preferences over candidates.
At each stage, a committee is chosen under a given voting rule.
We show a full complexity dichotomy for the class of Thiele rules.
arXiv Detail & Related papers (2024-08-20T17:16:54Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
This study seeks to identify and quantify biases in simulating political samples with Large Language Models.
Using the GPT-3.5-Turbo model, we leverage data from the American National Election Studies, German Longitudinal Election Study, Zuobiao dataset, and China Family Panel Studies.
arXiv Detail & Related papers (2024-07-16T05:52:26Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Incentive-Theoretic Bayesian Inference for Collaborative Science [59.15962177829337]
We study hypothesis testing when there is an agent with a private prior about an unknown parameter.
We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior.
arXiv Detail & Related papers (2023-07-07T17:59:01Z) - On the Complexity of Finding a Diverse and Representative Committee
using a Monotone, Separable Positional Multiwinner Voting Rule [0.0]
A growing line of research in computational social choice concerns the use of constraints to ensure fairness in elections.
Recent work proposed a model to find a diverse emphand representative committee and studied the model's computational aspects.
Here, we classify the complexity of finding a diverse and representative committee using a monotone, separable positional multiwinner voting rule.
arXiv Detail & Related papers (2022-11-23T18:56:44Z) - Fairly Allocating Utility in Constrained Multiwinner Elections [0.0]
A common denominator to ensure fairness across all such contexts is the use of constraints.
Across these contexts, the candidates selected to satisfy the given constraints may systematically lead to unfair outcomes for historically disadvantaged voter populations.
We develop a model to select candidates that satisfy the constraints fairly across voter populations.
arXiv Detail & Related papers (2022-11-23T10:04:26Z) - The Complexity of Learning Approval-Based Multiwinner Voting Rules [9.071560867542647]
We study the learnability of multiwinner voting, focusing on the class of approval-based committee scoring (ABCS) rules.
Our goal is to learn a target rule (i.e., to learn the corresponding scoring function) using information about the winning committees of a small number of profiles.
We prove that deciding whether there exists some ABCS rule that makes a given committee winning in a given profile is a hard problem.
arXiv Detail & Related papers (2021-10-01T08:25:05Z) - Bribery as a Measure of Candidate Success: Complexity Results for
Approval-Based Multiwinner Rules [58.8640284079665]
We study the problem of bribery in multiwinner elections, for the case where the voters cast approval ballots (i.e., sets of candidates they approve)
We consider a number of approval-based multiwinner rules (AV, SAV, GAV, RAV, approval-based Chamberlin--Courant, and PAV)
In general, our problems tend to be easier when we limit out bribery actions on increasing the number of approvals of the candidate that we want to be in a winning committee.
arXiv Detail & Related papers (2021-04-19T08:26:40Z) - Modeling Voters in Multi-Winner Approval Voting [24.002910959494923]
We study voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty.
We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation.
We propose a novel model that takes into account the size of the winning set and human cognitive constraints.
arXiv Detail & Related papers (2020-12-04T19:24:28Z) - MS-Ranker: Accumulating Evidence from Potentially Correct Candidates for
Answer Selection [59.95429407899612]
We propose a novel reinforcement learning based multi-step ranking model, named MS-Ranker.
We explicitly consider the potential correctness of candidates and update the evidence with a gating mechanism.
Our model significantly outperforms existing methods that do not rely on external resources.
arXiv Detail & Related papers (2020-10-10T10:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.