The Complexity of Learning Approval-Based Multiwinner Voting Rules
- URL: http://arxiv.org/abs/2110.00254v3
- Date: Mon, 31 Jul 2023 22:01:18 GMT
- Title: The Complexity of Learning Approval-Based Multiwinner Voting Rules
- Authors: Ioannis Caragiannis and Karl Fehrs
- Abstract summary: We study the learnability of multiwinner voting, focusing on the class of approval-based committee scoring (ABCS) rules.
Our goal is to learn a target rule (i.e., to learn the corresponding scoring function) using information about the winning committees of a small number of profiles.
We prove that deciding whether there exists some ABCS rule that makes a given committee winning in a given profile is a hard problem.
- Score: 9.071560867542647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the {PAC} learnability of multiwinner voting, focusing on the class
of approval-based committee scoring (ABCS) rules. These are voting rules
applied on profiles with approval ballots, where each voter approves some of
the candidates. According to ABCS rules, each committee of $k$ candidates
collects from each voter a score, which depends on the size of the voter's
ballot and on the size of its intersection with the committee. Then, committees
of maximum score are the winning ones. Our goal is to learn a target rule
(i.e., to learn the corresponding scoring function) using information about the
winning committees of a small number of sampled profiles. Despite the existence
of exponentially many outcomes compared to single-winner elections, we show
that the sample complexity is still low: a polynomial number of samples carries
enough information for learning the target rule with high confidence and
accuracy. Unfortunately, even simple tasks that need to be solved for learning
from these samples are intractable. We prove that deciding whether there exists
some ABCS rule that makes a given committee winning in a given profile is a
computationally hard problem. Our results extend to the class of sequential
Thiele rules, which have received attention recently due to their simplicity.
Related papers
- DeepVoting: Learning Voting Rules with Tailored Embeddings [13.037431161285971]
We recast the problem of designing a good voting rule into one of learning probabilistic versions of voting rules.
We show that embeddings of preference profiles derived from the social choice literature allows us to learn existing voting rules more efficiently.
We also show that rules learned using embeddings can be tweaked to create novel voting rules with improved axiomatic properties.
arXiv Detail & Related papers (2024-08-24T17:15:20Z) - Multiwinner Temporal Voting with Aversion to Change [30.15852603215344]
We study two-stage committee elections where voters have dynamic preferences over candidates.
At each stage, a committee is chosen under a given voting rule.
We show a full complexity dichotomy for the class of Thiele rules.
arXiv Detail & Related papers (2024-08-20T17:16:54Z) - Improving the Computational Efficiency of Adaptive Audits of IRV Elections [54.427049258408424]
AWAIRE can audit IRV contests with any number of candidates, but the original implementation incurred memory and computation costs that grew superexponentially with the number of candidates.
This paper improves the algorithmic implementation of AWAIRE in three ways that make it practical to audit IRV contests with 55 candidates, compared to the previous 6 candidates.
arXiv Detail & Related papers (2024-07-23T13:28:00Z) - Efficient Weighting Schemes for Auditing Instant-Runoff Voting Elections [57.67176250198289]
AWAIRE involves adaptively weighted averages of test statistics, essentially "learning" an effective set of hypotheses to test.
We explore schemes and settings more extensively, to identify and recommend efficient choices for practice.
A limitation of the current AWAIRE implementation is its restriction to a small number of candidates.
arXiv Detail & Related papers (2024-02-18T10:13:01Z) - Computing Voting Rules with Elicited Incomplete Votes [11.550634521005968]
We study voting rules that are computable by querying voters about $t m$ candidates.
For scoring rules that are computable with limited-sized queries, we give parameterized upper and lower bounds on the number of such queries.
arXiv Detail & Related papers (2024-02-16T22:17:01Z) - Adaptively Weighted Audits of Instant-Runoff Voting Elections: AWAIRE [61.872917066847855]
Methods for auditing instant-runoff voting (IRV) elections are either not risk-limiting or require cast vote records (CVRs), the voting system's electronic record of the votes on each ballot.
We develop an RLA method that uses adaptively weighted averages of test supermartingales to efficiently audit IRV elections when CVRs are not available.
arXiv Detail & Related papers (2023-07-20T15:55:34Z) - Data as voters: instance selection using approval-based multi-winner voting [1.597617022056624]
We present a novel approach to the instance selection problem in machine learning (or data mining)
In our model, instances play a double role as voters and candidates.
For SVMs, we have obtained slight increases in the average accuracy by using several voting rules that satisfy EJR or PJR.
arXiv Detail & Related papers (2023-04-19T22:00:23Z) - Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
We use the "map of elections" approach of Szufa et al. (AAMAS 2020) to analyze several well-known vote distributions.
We draw the "skeleton map" of distributions, evaluate its robustness, and analyze its properties.
arXiv Detail & Related papers (2022-05-16T17:40:22Z) - Obvious Manipulability of Voting Rules [105.35249497503527]
The Gibbard-Satterthwaite theorem states that no unanimous and non-dictatorial voting rule is strategyproof.
We revisit voting rules and consider a weaker notion of strategyproofness called not obvious manipulability.
arXiv Detail & Related papers (2021-11-03T02:41:48Z) - Bribery as a Measure of Candidate Success: Complexity Results for
Approval-Based Multiwinner Rules [58.8640284079665]
We study the problem of bribery in multiwinner elections, for the case where the voters cast approval ballots (i.e., sets of candidates they approve)
We consider a number of approval-based multiwinner rules (AV, SAV, GAV, RAV, approval-based Chamberlin--Courant, and PAV)
In general, our problems tend to be easier when we limit out bribery actions on increasing the number of approvals of the candidate that we want to be in a winning committee.
arXiv Detail & Related papers (2021-04-19T08:26:40Z) - Evaluating approval-based multiwinner voting in terms of robustness to
noise [10.135719343010177]
We show that approval-based multiwinner voting is always robust to reasonable noise.
We further refine this finding by presenting a hierarchy of rules in terms of how robust to noise they are.
arXiv Detail & Related papers (2020-02-05T13:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.