論文の概要: Federated Combinatorial Multi-Agent Multi-Armed Bandits
- arxiv url: http://arxiv.org/abs/2405.05950v1
- Date: Thu, 9 May 2024 17:40:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 12:43:04.393531
- Title: Federated Combinatorial Multi-Agent Multi-Armed Bandits
- Title(参考訳): Federated Combinatorial Multi-Agent Multi-Armed Bandits
- Authors: Fares Fourati, Mohamed-Slim Alouini, Vaneet Aggarwal,
- Abstract要約: 本稿では,Banditを用いたオンライン最適化に適したフェデレーション学習フレームワークを提案する。
この設定では、エージェントのアームサブセットは、個々のアーム情報にアクセスせずにこれらのサブセットに対するノイズの多い報酬を観察し、特定の間隔で協力して情報を共有することができる。
- 参考スコア(独自算出の注目度): 79.1700188160944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a federated learning framework tailored for online combinatorial optimization with bandit feedback. In this setting, agents select subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals. Our framework transforms any offline resilient single-agent $(\alpha-\epsilon)$-approximation algorithm, having a complexity of $\tilde{\mathcal{O}}(\frac{\psi}{\epsilon^\beta})$, where the logarithm is omitted, for some function $\psi$ and constant $\beta$, into an online multi-agent algorithm with $m$ communicating agents and an $\alpha$-regret of no more than $\tilde{\mathcal{O}}(m^{-\frac{1}{3+\beta}} \psi^\frac{1}{3+\beta} T^\frac{2+\beta}{3+\beta})$. This approach not only eliminates the $\epsilon$ approximation error but also ensures sublinear growth with respect to the time horizon $T$ and demonstrates a linear speedup with an increasing number of communicating agents. Additionally, the algorithm is notably communication-efficient, requiring only a sublinear number of communication rounds, quantified as $\tilde{\mathcal{O}}\left(\psi T^\frac{\beta}{\beta+1}\right)$. Furthermore, the framework has been successfully applied to online stochastic submodular maximization using various offline algorithms, yielding the first results for both single-agent and multi-agent settings and recovering specialized single-agent theoretical guarantees. We empirically validate our approach to a stochastic data summarization problem, illustrating the effectiveness of the proposed framework, even in single-agent scenarios.
- Abstract(参考訳): 本稿では,包括的フィードバックを伴うオンライン組合せ最適化に適したフェデレーション学習フレームワークを提案する。
この設定では、エージェントはアームのサブセットを選択し、個々のアーム情報にアクセスせずにこれらのサブセットのノイズの多い報酬を観察し、特定の間隔で協力して情報を共有することができる。
我々のフレームワークは、任意のオフラインレジリエントなシングルエージェント$(\alpha-\epsilon)$-approximationアルゴリズム、複雑さが$\tilde{\mathcal{O}}(\frac{\psi}{\epsilon^\beta})$、ある関数に対して$\psi$と定数$\beta$が省略され、$m$通信エージェントと$\tilde{\mathcal{O}}(m^{-\frac{1}{3+\beta}} \psi^\frac{1}{3+\beta} T^\frac{2+\beta+\beta$)以上の$\alpha$-regretのオンラインマルチエージェントアルゴリズムに変換する。
このアプローチは、$\epsilon$近似誤差を除去するだけでなく、時間的地平線に対するサブ線形成長を保証し、通信エージェントの増加とともに線形スピードアップを示す。
さらに、このアルゴリズムは通信効率が良く、通信ラウンドのサブ線形数だけを必要とし、$\tilde{\mathcal{O}}\left(\psi T^\frac{\beta}{\beta+1}\right)$と定量化される。
さらに、このフレームワークは、様々なオフラインアルゴリズムを用いて、オンライン確率的部分モジュラー最大化に適用され、単一エージェントとマルチエージェントの両方の設定の最初の結果を得るとともに、特殊な単一エージェント理論的保証を回復することに成功した。
我々は,確率的データ要約問題に対する我々のアプローチを実証的に検証し,単一エージェントシナリオにおいても提案手法の有効性を示す。
関連論文リスト
- Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
N$エージェントのネットワークがローカルに通信し、期待されるコストを所定の閾値$tau$で保持しながら、全体的な後悔を最小限に抑える。
我々は、textitMA-OPLBと呼ばれる安全な分散上信頼度有界アルゴリズムを提案し、そのT$ラウンドの後悔に基づく高い確率を確立する。
我々の後悔の限界は次数$ MathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)であることを示す。
論文 参考訳(メタデータ) (2024-10-22T19:34:53Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
我々は,選択した$n$のアームセットのジョイント報酬以外の余分な情報が観測されない場合に,マルチアームのバンディット問題に対する新規グリーディ・バンディット(SGB)アルゴリズムを提案する。
SGBは最適化された拡張型コミットアプローチを採用しており、ベースアームの大きなセットを持つシナリオ用に特別に設計されている。
論文 参考訳(メタデータ) (2023-12-13T11:08:25Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
本稿では,マルチエージェント・スパース文脈線形帯域問題に対処する新しい手法を提案する。
疎線形帯域における行単位の分散データに対処する最初のアルゴリズムである。
後悔を最小限に抑えるために効率的な特徴抽出が重要となる高次元マルチエージェント問題に適用可能である。
論文 参考訳(メタデータ) (2023-05-30T16:05:44Z) - Cooperative Multi-Agent Reinforcement Learning: Asynchronous
Communication and Linear Function Approximation [77.09836892653176]
マルコフ決定過程の設定におけるマルチエージェント強化学習について検討した。
本稿では非同期通信が可能な値に基づく証明可能な効率的なアルゴリズムを提案する。
我々は、コラボレーションによってパフォーマンスを改善するために、最小の$Omega(dM)$通信の複雑さが必要であることを示す。
論文 参考訳(メタデータ) (2023-05-10T20:29:29Z) - A Simple and Provably Efficient Algorithm for Asynchronous Federated
Contextual Linear Bandits [77.09836892653176]
我々は,M$エージェントが相互に協力して,中央サーバの助けを借りて,グローバルなコンテキスト線形バンドイット問題を解決するためのフェデレーション付きコンテキスト線形バンドイットについて検討した。
すべてのエージェントが独立して動作し、ひとつのエージェントとサーバ間の通信が他のエージェントの通信をトリガーしない非同期設定を考える。
texttFedLinUCBの後悔は$tildeO(dsqrtsum_m=1M T_m)$で、通信の複雑さは$tildeO(dM)であることを示す。
論文 参考訳(メタデータ) (2022-07-07T06:16:19Z) - Distributed Contextual Linear Bandits with Minimax Optimal Communication
Cost [48.288452411283444]
そこでは,$N$エージェントが協調して,$d$次元の特徴を持つ線形帯域最適化問題を解く。
本稿では,LinUCBアルゴリズムの分散バッチ除去版であるDisBE-LUCBを提案する。
我々は、DisBE-LUCBの通信コストがわずか$tildemathcalO(dN)$であり、その後悔は少なくとも$tildemathcalO(dN)$であることを示す。
論文 参考訳(メタデータ) (2022-05-26T05:56:23Z) - Distributed Bandits with Heterogeneous Agents [38.90376765616447]
本稿では、M$エージェントが協力して$K$武器の盗賊問題を解くマルチエージェントの盗賊設定に取り組む。
本稿では,ucbo と AAE の2つの学習アルゴリズムを提案する。
Oleft(sum_i:tildeDelta_i>0 log T/tildeDelta_iright)$, $tildeDelta_i$は報酬平均の最小部分最適差である。
論文 参考訳(メタデータ) (2022-01-23T20:04:15Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
我々は、腕の総数が膨大であることができるトップ$ k$極端な文脈的包帯問題を研究します。
まず,Inverse Gap Weighting戦略を用いて,非極端に実現可能な設定のアルゴリズムを提案する。
我々のアルゴリズムは、$O(ksqrt(A-k+1)T log (|mathcalF|T))$である。
論文 参考訳(メタデータ) (2021-02-15T19:10:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。