論文の概要: Probing Multimodal LLMs as World Models for Driving
- arxiv url: http://arxiv.org/abs/2405.05956v2
- Date: Fri, 25 Oct 2024 19:31:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 16:01:14.824303
- Title: Probing Multimodal LLMs as World Models for Driving
- Title(参考訳): ドライビングの世界モデルとしてのマルチモーダルLCMの提案
- Authors: Shiva Sreeram, Tsun-Hsuan Wang, Alaa Maalouf, Guy Rosman, Sertac Karaman, Daniela Rus,
- Abstract要約: 自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
- 参考スコア(独自算出の注目度): 72.18727651074563
- License:
- Abstract: We provide a sober look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving, challenging common assumptions about their ability to interpret dynamic driving scenarios. Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored. Our experimental study assesses various MLLMs as world models using in-car camera perspectives and reveals that while these models excel at interpreting individual images, they struggle to synthesize coherent narratives across frames, leading to considerable inaccuracies in understanding (i) ego vehicle dynamics, (ii) interactions with other road actors, (iii) trajectory planning, and (iv) open-set scene reasoning. We introduce the Eval-LLM-Drive dataset and DriveSim simulator to enhance our evaluation, highlighting gaps in current MLLM capabilities and the need for improved models in dynamic real-world environments.
- Abstract(参考訳): 本稿では,自律運転におけるMLLM(Multimodal Large Language Models)の適用を概観し,動的運転シナリオの解釈能力に関する一般的な仮定に挑戦する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
実験により,車載カメラの視点を用いたMLLMを世界モデルとして評価し,これらのモデルが個々の画像の解釈に優れる一方で,フレーム間のコヒーレントな物語の合成に苦慮していることが明らかとなった。
(i)エゴ車の動力学
(二)他のロードアクターとの交流
(三)軌道計画、及び
(4)オープンセットのシーン推論。
Eval-LLM-DriveデータセットとDriveSimシミュレータを導入し、評価を強化し、現在のMLLM能力のギャップを強調し、動的実環境におけるモデルの改善の必要性を強調した。
関連論文リスト
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
世界モデルとビデオ生成は、自動運転の領域において重要な技術である。
本稿では,この2つの技術の関係について検討する。
映像生成モデルと世界モデルとの相互作用を分析することにより,重要な課題と今後の研究方向性を明らかにする。
論文 参考訳(メタデータ) (2024-11-05T08:58:35Z) - Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
大規模言語モデル(LLM)は、自律運転システムの様々な側面を強化する可能性を秘めている。
本稿では,LLMを自動走行(LLM4AD)用に設計するための新しい概念とアプローチを紹介する。
論文 参考訳(メタデータ) (2024-10-20T04:36:19Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
私たちは、複雑な駆動ダイナミクスを備えたインタラクティブな世界モデルのトレーニング用に作られた最初のデータセットであるDrivingDojoを紹介します。
私たちのデータセットには、完全な運転操作、多様なマルチエージェント・インタープレイ、豊富なオープンワールド運転知識を備えたビデオクリップが含まれています。
論文 参考訳(メタデータ) (2024-10-14T17:19:23Z) - OccLLaMA: An Occupancy-Language-Action Generative World Model for Autonomous Driving [12.004183122121042]
OccLLaMA (OccLLaMA) は、言語による世界モデルである。
私たちは、視覚、言語、行動のための統合されたマルチモーダル語彙を構築します。
OccLLaMAは複数のタスクで競合性能を達成する。
論文 参考訳(メタデータ) (2024-09-05T06:30:01Z) - DriveVLM: The Convergence of Autonomous Driving and Large Vision-Language Models [31.552397390480525]
視覚言語モデル(VLM)を活用した自律運転システムDriveVLMを紹介する。
DriveVLMは、シーン記述、シーン分析、階層計画のための推論モジュールのユニークな組み合わせを統合している。
本稿では,DriveVLMの強みを従来の自律走行パイプラインと相乗化するハイブリッドシステムであるDriveVLM-Dualを提案する。
論文 参考訳(メタデータ) (2024-02-19T17:04:04Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - Cycle-Consistent World Models for Domain Independent Latent Imagination [0.0]
高いコストとリスクは、現実世界での自動運転車の訓練を困難にします。
本稿では,Cycleconsistent World Modelsと呼ばれる新しいモデルに基づく強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-02T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。