A Universal Growth Rate for Learning with Smooth Surrogate Losses
- URL: http://arxiv.org/abs/2405.05968v2
- Date: Mon, 8 Jul 2024 17:20:19 GMT
- Title: A Universal Growth Rate for Learning with Smooth Surrogate Losses
- Authors: Anqi Mao, Mehryar Mohri, Yutao Zhong,
- Abstract summary: We prove a square-root growth rate near zero for smooth margin-based surrogate losses in binary classification.
We extend this analysis to multi-class classification with a series of novel results.
- Score: 30.389055604165222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive analysis of the growth rate of $H$-consistency bounds (and excess error bounds) for various surrogate losses used in classification. We prove a square-root growth rate near zero for smooth margin-based surrogate losses in binary classification, providing both upper and lower bounds under mild assumptions. This result also translates to excess error bounds. Our lower bound requires weaker conditions than those in previous work for excess error bounds, and our upper bound is entirely novel. Moreover, we extend this analysis to multi-class classification with a series of novel results, demonstrating a universal square-root growth rate for smooth comp-sum and constrained losses, covering common choices for training neural networks in multi-class classification. Given this universal rate, we turn to the question of choosing among different surrogate losses. We first examine how $H$-consistency bounds vary across surrogates based on the number of classes. Next, ignoring constants and focusing on behavior near zero, we identify minimizability gaps as the key differentiating factor in these bounds. Thus, we thoroughly analyze these gaps, to guide surrogate loss selection, covering: comparisons across different comp-sum losses, conditions where gaps become zero, and general conditions leading to small gaps. Additionally, we demonstrate the key role of minimizability gaps in comparing excess error bounds and $H$-consistency bounds.
Related papers
- Enhanced $H$-Consistency Bounds [30.389055604165222]
We present a framework for establishing enhanced $H$-consistency bounds based on more general inequalities relating conditional regrets.
Our theorems subsume existing results as special cases but also enable the derivation of more favorable bounds in various scenarios.
These include standard multi-class classification, binary and multi-class classification under Tsybakov noise conditions, and bipartite ranking.
arXiv Detail & Related papers (2024-07-18T17:22:40Z) - Top-$k$ Classification and Cardinality-Aware Prediction [30.389055604165222]
We show that comp-sum and constrained losses are supported by $H$-consistency bounds with respect to the top-$k$ loss.
We introduce cardinality-aware loss functions through instance-dependent cost-sensitive learning.
Minimizing these losses leads to new cardinality-aware algorithms for top-$k$ classification.
arXiv Detail & Related papers (2024-03-28T17:45:03Z) - Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning [59.44422468242455]
We propose a novel method dubbed ShrinkMatch to learn uncertain samples.
For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class.
We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations.
arXiv Detail & Related papers (2023-08-13T14:05:24Z) - The Adversarial Consistency of Surrogate Risks for Binary Classification [20.03511985572199]
adversarial training seeks to minimize the expected $0$-$1$ loss when each example can be maliciously corrupted within a small ball.
We give a simple and complete characterization of the set of surrogate loss functions that are consistent.
Our results reveal that the class of adversarially consistent surrogates is substantially smaller than in the standard setting.
arXiv Detail & Related papers (2023-05-17T05:27:40Z) - Multiclass learning with margin: exponential rates with no bias-variance
trade-off [16.438523317718694]
We study the behavior of error bounds for multiclass classification under suitable margin conditions.
Different convergence rates can be obtained in correspondence of different margin assumptions.
arXiv Detail & Related papers (2022-02-03T18:57:27Z) - Constrained Classification and Policy Learning [0.0]
We study consistency of surrogate loss procedures under a constrained set of classifiers.
We show that hinge losses are the only surrogate losses that preserve consistency in second-best scenarios.
arXiv Detail & Related papers (2021-06-24T10:43:00Z) - Lower-bounded proper losses for weakly supervised classification [73.974163801142]
We discuss the problem of weakly supervised learning of classification, in which instances are given weak labels.
We derive a representation theorem for proper losses in supervised learning, which dualizes the Savage representation.
We experimentally demonstrate the effectiveness of our proposed approach, as compared to improper or unbounded losses.
arXiv Detail & Related papers (2021-03-04T08:47:07Z) - Relative Deviation Margin Bounds [55.22251993239944]
We give two types of learning bounds, both distribution-dependent and valid for general families, in terms of the Rademacher complexity.
We derive distribution-dependent generalization bounds for unbounded loss functions under the assumption of a finite moment.
arXiv Detail & Related papers (2020-06-26T12:37:17Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z) - Calibrated Surrogate Losses for Adversarially Robust Classification [92.37268323142307]
We show that no convex surrogate loss is respect with respect to adversarial 0-1 loss when restricted to linear models.
We also show that if the underlying distribution satisfies the Massart's noise condition, convex losses can also be calibrated in the adversarial setting.
arXiv Detail & Related papers (2020-05-28T02:40:42Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.