Of Dice and Games: A Theory of Generalized Boosting
- URL: http://arxiv.org/abs/2412.08012v1
- Date: Wed, 11 Dec 2024 01:38:32 GMT
- Title: Of Dice and Games: A Theory of Generalized Boosting
- Authors: Marco Bressan, Nataly Brukhim, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen,
- Abstract summary: We extend the celebrated theory of boosting to incorporate both cost-sensitive and multi-objective losses.
We develop a comprehensive theory of cost-sensitive and multi-objective boosting, providing a taxonomy of weak learning guarantees.
Our characterization relies on a geometric interpretation of boosting, revealing a surprising equivalence between cost-sensitive and multi-objective losses.
- Score: 61.752303337418475
- License:
- Abstract: Cost-sensitive loss functions are crucial in many real-world prediction problems, where different types of errors are penalized differently; for example, in medical diagnosis, a false negative prediction can lead to worse consequences than a false positive prediction. However, traditional PAC learning theory has mostly focused on the symmetric 0-1 loss, leaving cost-sensitive losses largely unaddressed. In this work, we extend the celebrated theory of boosting to incorporate both cost-sensitive and multi-objective losses. Cost-sensitive losses assign costs to the entries of a confusion matrix, and are used to control the sum of prediction errors accounting for the cost of each error type. Multi-objective losses, on the other hand, simultaneously track multiple cost-sensitive losses, and are useful when the goal is to satisfy several criteria at once (e.g., minimizing false positives while keeping false negatives below a critical threshold). We develop a comprehensive theory of cost-sensitive and multi-objective boosting, providing a taxonomy of weak learning guarantees that distinguishes which guarantees are trivial (i.e., can always be achieved), which ones are boostable (i.e., imply strong learning), and which ones are intermediate, implying non-trivial yet not arbitrarily accurate learning. For binary classification, we establish a dichotomy: a weak learning guarantee is either trivial or boostable. In the multiclass setting, we describe a more intricate landscape of intermediate weak learning guarantees. Our characterization relies on a geometric interpretation of boosting, revealing a surprising equivalence between cost-sensitive and multi-objective losses.
Related papers
- Balancing the Scales: A Theoretical and Algorithmic Framework for Learning from Imbalanced Data [35.03888101803088]
This paper introduces a novel theoretical framework for analyzing generalization in imbalanced classification.
We propose a new class-imbalanced margin loss function for both binary and multi-class settings, prove its strong $H$-consistency, and derive corresponding learning guarantees.
We devise novel and general learning algorithms, IMMAX, which incorporate confidence margins and are applicable to various hypothesis sets.
arXiv Detail & Related papers (2025-02-14T18:57:16Z) - Top-$k$ Classification and Cardinality-Aware Prediction [30.389055604165222]
We show that comp-sum and constrained losses are supported by $H$-consistency bounds with respect to the top-$k$ loss.
We introduce cardinality-aware loss functions through instance-dependent cost-sensitive learning.
Minimizing these losses leads to new cardinality-aware algorithms for top-$k$ classification.
arXiv Detail & Related papers (2024-03-28T17:45:03Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - The Adversarial Consistency of Surrogate Risks for Binary Classification [20.03511985572199]
adversarial training seeks to minimize the expected $0$-$1$ loss when each example can be maliciously corrupted within a small ball.
We give a simple and complete characterization of the set of surrogate loss functions that are consistent.
Our results reveal that the class of adversarially consistent surrogates is substantially smaller than in the standard setting.
arXiv Detail & Related papers (2023-05-17T05:27:40Z) - Loss Minimization through the Lens of Outcome Indistinguishability [11.709566373491619]
We present a new perspective on convex loss and the recent notion of Omniprediction.
By design, Loss OI implies omniprediction in a direct and intuitive manner.
We show that Loss OI for the important set of losses arising from Generalized Models, without requiring full multicalibration.
arXiv Detail & Related papers (2022-10-16T22:25:27Z) - Leveraged Weighted Loss for Partial Label Learning [64.85763991485652]
Partial label learning deals with data where each instance is assigned with a set of candidate labels, whereas only one of them is true.
Despite many methodology studies on learning from partial labels, there still lacks theoretical understandings of their risk consistent properties.
We propose a family of loss functions named textitd weighted (LW) loss, which for the first time introduces the leverage parameter $beta$ to consider the trade-off between losses on partial labels and non-partial ones.
arXiv Detail & Related papers (2021-06-10T13:25:13Z) - Rethinking and Reweighting the Univariate Losses for Multi-Label
Ranking: Consistency and Generalization [44.73295800450414]
(Partial) ranking loss is a commonly used evaluation measure for multi-label classification.
There is a gap between existing theory and practice -- some pairwise losses can lead to promising performance but lack consistency.
arXiv Detail & Related papers (2021-05-10T09:23:27Z) - Lower-bounded proper losses for weakly supervised classification [73.974163801142]
We discuss the problem of weakly supervised learning of classification, in which instances are given weak labels.
We derive a representation theorem for proper losses in supervised learning, which dualizes the Savage representation.
We experimentally demonstrate the effectiveness of our proposed approach, as compared to improper or unbounded losses.
arXiv Detail & Related papers (2021-03-04T08:47:07Z) - A Symmetric Loss Perspective of Reliable Machine Learning [87.68601212686086]
We review how a symmetric loss can yield robust classification from corrupted labels in balanced error rate (BER) minimization.
We demonstrate how the robust AUC method can benefit natural language processing in the problem where we want to learn only from relevant keywords.
arXiv Detail & Related papers (2021-01-05T06:25:47Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.