論文の概要: CloudSense: A Model for Cloud Type Identification using Machine Learning from Radar data
- arxiv url: http://arxiv.org/abs/2405.05988v1
- Date: Wed, 8 May 2024 21:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:36:09.353986
- Title: CloudSense: A Model for Cloud Type Identification using Machine Learning from Radar data
- Title(参考訳): CloudSense: レーダデータからの機械学習を用いたクラウドタイプ識別モデル
- Authors: Mehzooz Nizar, Jha K. Ambuj, Manmeet Singh, Vaisakh S. B, G. Pandithurai,
- Abstract要約: 本研究では,インド西部の複雑な地形上の降雨雲のタイプを,機械学習を用いて正確に同定するCloudSenseという新しいモデルを提案する。
CloudSenseは2018年7月から8月にかけて、Xバンドレーダーから収集された垂直反射率プロファイルを使用して、雲を成層型、混合層状対流型、対流型、浅層雲の4つのカテゴリに分類する。
以上の結果から,WGの複雑な地形における降水量推定を改善する上で有用な,より正確な雲の検出と分類が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 1.4843690728082002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The knowledge of type of precipitating cloud is crucial for radar based quantitative estimates of precipitation. We propose a novel model called CloudSense which uses machine learning to accurately identify the type of precipitating clouds over the complex terrain locations in the Western Ghats (WGs) of India. CloudSense uses vertical reflectivity profiles collected during July-August 2018 from an X-band radar to classify clouds into four categories namely stratiform,mixed stratiform-convective,convective and shallow clouds. The machine learning(ML) model used in CloudSense was trained using a dataset balanced by Synthetic Minority Oversampling Technique (SMOTE), with features selected based on physical characteristics relevant to different cloud types. Among various ML models evaluated Light Gradient Boosting Machine (LightGBM) demonstrate superior performance in classifying cloud types with a BAC of 0.8 and F1-Score of 0.82. CloudSense generated results are also compared against conventional radar algorithms and we find that CloudSense performs better than radar algorithms. For 200 samples tested, the radar algorithm achieved a BAC of 0.69 and F1-Score of 0.68, whereas CloudSense achieved a BAC and F1-Score of 0.77. Our results show that ML based approach can provide more accurate cloud detection and classification which would be useful to improve precipitation estimates over the complex terrain of the WG.
- Abstract(参考訳): 降雨の種類に関する知識は、レーダーによる降雨量の推定に不可欠である。
本研究では,インド西部ガッツ(WGs)の複雑な地形上の降雨雲のタイプを,機械学習を用いて正確に同定するCloudSenseという新しいモデルを提案する。
CloudSenseは2018年7月から8月にかけて、Xバンドレーダーから収集された垂直反射率プロファイルを使用して、雲を成層型、混合層状対流型、対流型、浅層雲の4つのカテゴリに分類する。
CloudSenseで使用される機械学習(ML)モデルは、SMOTE(Synthetic Minority Oversampling Technique)によってバランスのとれたデータセットを使用してトレーニングされた。
評価された各種MLモデルのうち、Light Gradient Boosting Machine (LightGBM) は BAC 0.8 と F1-Score 0.82 の雲型分類において優れた性能を示した。
CloudSenseの生成した結果も従来のレーダアルゴリズムと比較した結果,CloudSenseはレーダアルゴリズムよりも優れていることがわかった。
200のサンプルに対して、レーダーアルゴリズムはBAC0.69とF1スコア0.68を達成し、CloudSenseはBAC0.77を達成した。
以上の結果から,WGの複雑な地形における降水量推定を改善する上で有用な,より正確な雲の検出と分類が可能であることが示唆された。
関連論文リスト
- Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images [22.054023867495722]
クラウドセグメンテーションはリモートセンシング画像解釈において重要な課題である。
本稿では,クラウドセグメンテーションの精度とロバスト性を高めるために,Cloud-Adapterと呼ばれるパラメータ効率適応手法を提案する。
論文 参考訳(メタデータ) (2024-11-20T08:37:39Z) - Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
私たちは小説を提案します。
ポイントGST (Point GST) と呼ばれる点雲の効率的な微細調整法。
ポイントGSTは事前トレーニングされたモデルを凍結し、スペクトル領域のパラメータを微調整するためのトレーニング可能なポイントクラウドスペクトルアダプタ(PCSA)を導入する。
挑戦的なポイントクラウドデータセットに関する大規模な実験は、ポイントGSTが完全に微調整されたデータセットを上回るだけでなく、トレーニング可能なパラメータを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-10-10T17:00:04Z) - Image-Guided Outdoor LiDAR Perception Quality Assessment for Autonomous Driving [107.68311433435422]
本研究では,屋外自動運転環境を対象とした画像誘導点雲質評価アルゴリズムを提案する。
IGO-PQA生成アルゴリズムは、単一フレームのLiDARベースのポイントクラウドに対して、全体的な品質スコアを生成する。
第2のコンポーネントは、非参照アウトドアポイントクラウド品質評価のためのトランスフォーマーベースのIGO-PQA回帰アルゴリズムである。
論文 参考訳(メタデータ) (2024-06-25T04:16:14Z) - Zero-shot Point Cloud Completion Via 2D Priors [52.72867922938023]
3次元点雲の完成は、部分的に観測された点雲から完全な形状を復元するように設計されている。
そこで本研究では, 観測された点群を対象とするゼロショットフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T08:02:17Z) - Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI [3.4764766275808583]
雲の形成は、しばしば地球の地表を観測する光学衛星による不明瞭な観測である。
雲の光学的厚さ推定のための新しい合成データセットを提案する。
信頼性と汎用性を備えたクラウドマスクを実データで取得するために活用する。
論文 参考訳(メタデータ) (2023-11-23T14:28:28Z) - Detecting Cloud Presence in Satellite Images Using the RGB-based CLIP
Vision-Language Model [0.0]
この研究は、雲によって影響を受ける衛星画像を特定するために、事前訓練されたCLIPビジョン言語モデルの能力を探求する。
このモデルを用いて雲の存在検知を行うためのいくつかの手法を提案し,評価した。
以上の結果から,CLIPモデルで学習した表現は,雲を含む衛星画像処理作業に有用であることが示唆された。
論文 参考訳(メタデータ) (2023-08-01T13:36:46Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - AICCA: AI-driven Cloud Classification Atlas [0.0]
本研究は, 衛星雲観測の次元性を, 自動化された非教師なしの雲分類技術を用いてグループ化することによって低減する。
このアプローチを使用して、AI駆動型クラウド分類アトラス(AICCA)という、ユニークな新しいクラウドデータセットを生成します。
論文 参考訳(メタデータ) (2022-09-29T21:01:31Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Cloud detection machine learning algorithms for PROBA-V [6.950862982117125]
本論文で提示されるアルゴリズムの目的は,ピクセル当たりのクラウドフラグを正確に提示するクラウドを検出することである。
提案手法の有効性を,多数の実proba-v画像を用いて検証した。
論文 参考訳(メタデータ) (2020-12-09T18:23:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。