Bayesian Prediction-Powered Inference
- URL: http://arxiv.org/abs/2405.06034v1
- Date: Thu, 9 May 2024 18:08:58 GMT
- Title: Bayesian Prediction-Powered Inference
- Authors: R. Alex Hofer, Joshua Maynez, Bhuwan Dhingra, Adam Fisch, Amir Globerson, William W. Cohen,
- Abstract summary: Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a framework for PPI based on Bayesian inference that allows researchers to develop new task-appropriate PPI methods easily.
- Score: 62.2436697657307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data. Specifically, PPI methods provide tighter confidence intervals by combining small amounts of human-labeled data with larger amounts of data labeled by a reasonably accurate, but potentially biased, automatic system. We propose a framework for PPI based on Bayesian inference that allows researchers to develop new task-appropriate PPI methods easily. Exploiting the ease with which we can design new metrics, we propose improved PPI methods for several importantcases, such as autoraters that give discrete responses (e.g., prompted LLM ``judges'') and autoraters with scores that have a non-linear relationship to human scores.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Query Performance Prediction using Relevance Judgments Generated by Large Language Models [53.97064615557883]
We propose a QPP framework using automatically generated relevance judgments (QPP-GenRE)
QPP-GenRE decomposes QPP into independent subtasks of predicting relevance of each item in a ranked list to a given query.
This allows us to predict any IR evaluation measure using the generated relevance judgments as pseudo-labels.
arXiv Detail & Related papers (2024-04-01T09:33:05Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - PPI++: Efficient Prediction-Powered Inference [31.403415618169433]
We present PPI++: a methodology for estimation and inference based on a small labeled dataset and a typically much larger dataset of machine-learning predictions.
The methods automatically adapt to the quality of available predictions, yielding easy-to-compute confidence sets.
PPI++ builds on prediction-powered inference (PPI), which targets the same problem setting, improving its computational and statistical efficiency.
arXiv Detail & Related papers (2023-11-02T17:59:04Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Reliable Prediction Intervals with Directly Optimized Inductive
Conformal Regression for Deep Learning [3.42658286826597]
Predictions intervals (PIs) are used to quantify the uncertainty of each prediction in deep learning regression.
Many approaches to improve the quality of PIs can effectively reduce the width of PIs, but they do not ensure that enough real labels are captured.
In this study, we use Directly Optimized Inductive Conformal Regression (DOICR) that takes only the average width of PIs as the loss function.
Benchmark experiments show that DOICR outperforms current state-of-the-art algorithms for regression problems.
arXiv Detail & Related papers (2023-02-02T04:46:14Z) - Neural Enhanced Belief Propagation for Multiobject Tracking [8.228150100178983]
We introduce a variant of BP that combines model-based with data-driven MOT.
Our NEBP method improves tracking performance compared to model-based methods.
We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset.
arXiv Detail & Related papers (2022-12-16T08:31:07Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.