Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
- URL: http://arxiv.org/abs/2405.06119v2
- Date: Fri, 27 Sep 2024 03:35:49 GMT
- Title: Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
- Authors: Revanth Mattey, Susanta Ghosh,
- Abstract summary: We propose a separable neural network-based approximation of the phase field in a minimizing movement scheme to solve a gradient flow problem.
The proposed method outperforms the state-of-the-art machine learning methods for phase separation problems.
- Score: 1.2277343096128712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $L^2$ gradient flow of the Ginzburg-Landau free energy functional leads to the Allen Cahn equation that is widely used for modeling phase separation. Machine learning methods for solving the Allen-Cahn equation in its strong form suffer from inaccuracies in collocation techniques, errors in computing higher-order spatial derivatives through automatic differentiation, and the large system size required by the space-time approach. To overcome these limitations, we propose a separable neural network-based approximation of the phase field in a minimizing movement scheme to solve the aforementioned gradient flow problem. At each time step, the separable neural network is used to approximate the phase field in space through a low-rank tensor decomposition thereby accelerating the derivative calculations. The minimizing movement scheme naturally allows for the use of Gauss quadrature technique to compute the functional. A `$tanh$' transformation is applied on the neural network-predicted phase field to strictly bounds the solutions within the values of the two phases. For this transformation, a theoretical guarantee for energy stability of the minimizing movement scheme is established. Our results suggest that bounding the solution through this transformation is the key to effectively model sharp interfaces through separable neural network. The proposed method outperforms the state-of-the-art machine learning methods for phase separation problems and is an order of magnitude faster than the finite element method.
Related papers
- An End-to-End Deep Learning Method for Solving Nonlocal Allen-Cahn and Cahn-Hilliard Phase-Field Models [11.92061406443778]
We propose an efficient end-to-end deep learning method for solving nonlocal Allen-Cahn (AC) and Cahn-Hilliard (CH) phase-field models.
We tailor the architecture of the neural network by incorporating a nonlocal kernel as an input channel to the neural network model.
arXiv Detail & Related papers (2024-10-11T15:41:47Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions.
We further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters.
arXiv Detail & Related papers (2022-08-31T20:52:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Error-Correcting Neural Networks for Semi-Lagrangian Advection in the
Level-Set Method [0.0]
We present a machine learning framework that blends image super-resolution technologies with scalar transport in the level-set method.
We investigate whether we can compute on-the-fly data-driven corrections to minimize numerical viscosity in the coarse-mesh evolution of an interface.
arXiv Detail & Related papers (2021-10-22T06:36:15Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
This paper presents a deep learning-based de-homogenization method for structural compliance minimization.
For an appropriate choice of parameters, the de-homogenized designs perform within $7-25%$ of the homogenization-based solution.
arXiv Detail & Related papers (2021-05-10T09:50:06Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.