DisBeaNet: A Deep Neural Network to augment Unmanned Surface Vessels for maritime situational awareness
- URL: http://arxiv.org/abs/2405.06149v2
- Date: Fri, 17 May 2024 20:38:24 GMT
- Title: DisBeaNet: A Deep Neural Network to augment Unmanned Surface Vessels for maritime situational awareness
- Authors: Srikanth Vemula, Eulises Franco, Michael Frye,
- Abstract summary: This paper will present a novel low-cost vision perception system for detecting and tracking vessels in the maritime environment.
A neural network, DisBeaNet, can detect vessels, track, and estimate the vessel's distance and bearing from the monocular camera.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intelligent detection and tracking of the vessels on the sea play a significant role in conducting traffic avoidance in unmanned surface vessels(USV). Current traffic avoidance software relies mainly on Automated Identification System (AIS) and radar to track other vessels to avoid collisions and acts as a typical perception system to detect targets. However, in a contested environment, emitting radar energy also presents the vulnerability to detection by adversaries. Deactivating these Radiofrequency transmitting sources will increase the threat of detection and degrade the USV's ability to monitor shipping traffic in the vicinity. Therefore, an intelligent visual perception system based on an onboard camera with passive sensing capabilities that aims to assist USV in addressing this problem is presented in this paper. This paper will present a novel low-cost vision perception system for detecting and tracking vessels in the maritime environment. This novel low-cost vision perception system is introduced using the deep learning framework. A neural network, DisBeaNet, can detect vessels, track, and estimate the vessel's distance and bearing from the monocular camera. The outputs obtained from this neural network are used to determine the latitude and longitude of the identified vessel.
Related papers
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
This paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions.
The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog.
The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset.
arXiv Detail & Related papers (2023-08-08T14:25:13Z) - Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network [0.0]
We introduce wavelet transformation-based Convolution Neural Network approach to recognize objects from SAR images during the heavy naval traffic.
The information comprises Sentinel-1 SAR-C dual-polarization data acquisitions over the western coastal zones of India.
arXiv Detail & Related papers (2023-04-23T18:09:44Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Safe Vessel Navigation Visually Aided by Autonomous Unmanned Aerial
Vehicles in Congested Harbors and Waterways [9.270928705464193]
This work is the first attempt to detect and estimate distances to unknown objects from long-range visual data captured with conventional RGB cameras and auxiliary absolute positioning systems (e.g. GPS)
The simulation results illustrate the accuracy and efficacy of the proposed method for visually aided navigation of vessels assisted by UAV.
arXiv Detail & Related papers (2021-08-09T08:15:17Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Driver Safety Development Real Time Driver Drowsiness Detection System
Based on Convolutional Neural Network [1.7188280334580195]
This paper focuses on the challenge of driver safety on the road and presents a novel system for drowsiness detection.
To detect the falling sleep state of the driver as the sign of drowsiness, Convolutional Neural Networks (CNN) are used.
arXiv Detail & Related papers (2020-01-15T05:38:24Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.