Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network
- URL: http://arxiv.org/abs/2304.11717v1
- Date: Sun, 23 Apr 2023 18:09:44 GMT
- Title: Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network
- Authors: Surya Prakash Tiwari, Sudhir Kumar Chaturvedi, Subhrangshu Adhikary,
Saikat Banerjee and Sourav Basu
- Abstract summary: We introduce wavelet transformation-based Convolution Neural Network approach to recognize objects from SAR images during the heavy naval traffic.
The information comprises Sentinel-1 SAR-C dual-polarization data acquisitions over the western coastal zones of India.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advancement of multi-channel synthetic aperture radar (SAR) system is
considered as an upgraded technology for surveillance activities. SAR sensors
onboard provide data for coastal ocean surveillance and a view of the oceanic
surface features. Vessel monitoring has earlier been performed using Constant
False Alarm Rate (CFAR) algorithm which is not a smart technique as it lacks
decision-making capabilities, therefore we introduce wavelet
transformation-based Convolution Neural Network approach to recognize objects
from SAR images during the heavy naval traffic, which corresponds to the
numerous object detection. The utilized information comprises Sentinel-1 SAR-C
dual-polarization data acquisitions over the western coastal zones of India and
with help of the proposed technique we have obtained 95.46% detection accuracy.
Utilizing this model can automatize the monitoring of naval objects and
recognition of foreign maritime intruders.
Related papers
- A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons [10.75221614844458]
We first briefly summarize four challenges for object detection on maritime UAVs, i.e. object feature diversity, device limitation, maritime environment variability, and dataset scarcity.
Next, we review the UAV aerial image/video datasets and propose a maritime UAV aerial dataset named MS2ship for ship detection.
arXiv Detail & Related papers (2023-11-14T07:20:38Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems.
It is now possible to automate detection of dark vessels day or night, under all-weather conditions.
xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission.
arXiv Detail & Related papers (2022-06-02T06:53:45Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Automated System for Ship Detection from Medium Resolution Satellite
Optical Imagery [3.190574537106449]
We present a ship detection pipeline for low-cost medium resolution satellite optical imagery obtained from ESA Sentinel-2 and Planet Labs Dove constellations.
This optical satellite imagery is readily available for any place on Earth and underutilized in the maritime domain, compared to existing solutions based on synthetic-aperture radar (SAR) imagery.
arXiv Detail & Related papers (2021-04-28T15:06:18Z) - Boosting ship detection in SAR images with complementary pretraining
techniques [14.34438598597809]
We propose an optical ship detector (OSD) pretraining technique, which transfers the characteristics of ships in earth observations to SAR images from a large-scale aerial image dataset.
We also propose an optical-SAR matching (OSM) pretraining technique, which transfers plentiful texture features from optical images to SAR images by common representation learning.
The proposed method won the sixth place of ship detection in SAR images in 2020 Gaofen challenge.
arXiv Detail & Related papers (2021-03-15T10:03:04Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.