論文の概要: MDNet: Multi-Decoder Network for Abdominal CT Organs Segmentation
- arxiv url: http://arxiv.org/abs/2405.06166v1
- Date: Fri, 10 May 2024 01:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:06:55.268078
- Title: MDNet: Multi-Decoder Network for Abdominal CT Organs Segmentation
- Title(参考訳): MDNet:腹部CT臓器分割のためのマルチデコーダネットワーク
- Authors: Debesh Jha, Nikhil Kumar Tomar, Koushik Biswas, Gorkem Durak, Matthew Antalek, Zheyuan Zhang, Bin Wang, Md Mostafijur Rahman, Hongyi Pan, Alpay Medetalibeyoglu, Yury Velichko, Daniela Ladner, Amir Borhani, Ulas Bagci,
- Abstract要約: 臓器の形状,大きさ,複雑な解剖学的関係における異質性の課題に対処するためのtextbftextitacMDNetを提案する。
textitacMDNetは、トレーニング済みのtextitMiT-B2 をエンコーダと複数の異なるデコーダネットワークとして使用するエンコーダ-デコーダネットワークである。
textitacMDNetは、他のベースラインモデルよりも解釈可能で堅牢である。
- 参考スコア(独自算出の注目度): 6.4987174473651725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of organs from abdominal CT scans is essential for clinical applications such as diagnosis, treatment planning, and patient monitoring. To handle challenges of heterogeneity in organ shapes, sizes, and complex anatomical relationships, we propose a \textbf{\textit{\ac{MDNet}}}, an encoder-decoder network that uses the pre-trained \textit{MiT-B2} as the encoder and multiple different decoder networks. Each decoder network is connected to a different part of the encoder via a multi-scale feature enhancement dilated block. With each decoder, we increase the depth of the network iteratively and refine segmentation masks, enriching feature maps by integrating previous decoders' feature maps. To refine the feature map further, we also utilize the predicted masks from the previous decoder to the current decoder to provide spatial attention across foreground and background regions. MDNet effectively refines the segmentation mask with a high dice similarity coefficient (DSC) of 0.9013 and 0.9169 on the Liver Tumor segmentation (LiTS) and MSD Spleen datasets. Additionally, it reduces Hausdorff distance (HD) to 3.79 for the LiTS dataset and 2.26 for the spleen segmentation dataset, underscoring the precision of MDNet in capturing the complex contours. Moreover, \textit{\ac{MDNet}} is more interpretable and robust compared to the other baseline models.
- Abstract(参考訳): 腹部CT検査による臓器の正確な分節化は, 診断, 治療計画, 患者モニタリングなどの臨床応用に不可欠である。
臓器形状, サイズ, 複雑な解剖学的関係における不均一性の課題に対処するために, 予め訓練した \textit{MiT-B2} をエンコーダとして, 複数異なるデコーダネットワークとして使用するエンコーダネットワークである \textbf{\textit{\ac{MDNet}}} を提案する。
各デコーダネットワークは、マルチスケールの機能拡張拡張ブロックを介して、エンコーダの異なる部分に接続される。
各デコーダにより、ネットワークの深さを反復的に増加させ、セグメンテーションマスクを洗練させ、前のデコーダの特徴マップを統合することで特徴マップを強化する。
さらに特徴マップを改良するために、予測マスクを以前のデコーダから現在のデコーダに利用して、前景や背景領域に空間的注意を向ける。
MDNetは、肝腫瘍セグメンテーション(LiTS)とMSD Spleenデータセットにおいて、高いダイス類似度係数(DSC)0.9013と0.9169のセグメンテーションマスクを効果的に洗練する。
さらに、LiTSデータセットではハウスドルフ距離(HD)が3.79に、スプレエンセグメンテーションデータセットでは2.26に減少し、複雑な輪郭を捉える際にMDNetの精度が低下する。
さらに、 \textit{\ac{MDNet}} は他のベースラインモデルよりも解釈可能で堅牢である。
関連論文リスト
- M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - HistoSeg : Quick attention with multi-loss function for multi-structure
segmentation in digital histology images [0.696194614504832]
医療画像のセグメンテーションは、コンピュータ支援による診断、手術、治療を支援する。
一般化デコーダネットワーク,クイックアテンションモジュール,マルチロス関数を提案する。
医用画像セグメンテーション用データセットであるMoNuSegとGlaSにおいて,提案するネットワークの有効性を評価する。
論文 参考訳(メタデータ) (2022-09-01T21:10:00Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Double Encoder-Decoder Networks for Gastrointestinal Polyp Segmentation [19.338350044289736]
本稿では,一般的なエンコーダ・デコーダネットワークを直接拡張した意味的セグメンテーションに基づく内視鏡画像からの消化管ポリープのデライン化手法を提案する。
提案手法では,2つの事前学習エンコーダデコーダネットワークを順次積み重ねる。
二重エンコーダ・デコーダネットワークは、すべてのケースにおいて、それぞれのエンコーダ・デコーダネットワークよりも明らかに優れている。
論文 参考訳(メタデータ) (2021-10-05T11:07:42Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
ヒト脳のMRIスキャンを虚血性脳梗塞と正常組織に分割する方法を提案する。
本稿では,空間展開埋め込みネットワークによって予測を導出する標準エンコーダデコーダの形式でニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-18T00:21:17Z) - Hierarchical 3D Feature Learning for Pancreas Segmentation [11.588903060674344]
MRIとCTの両方から膵分画を自動化する3D完全畳み込み型深層ネットワークを提案する。
本モデルでは,Diceスコアが約88%と,既存のCT膵セグメンテーション法よりも優れていた。
さらなる制御実験により、達成された性能は、我々の3次元完全畳み込み深層ネットワークと階層的表現復号化の組み合わせによるものであることが示された。
論文 参考訳(メタデータ) (2021-09-03T09:27:07Z) - Atrous Residual Interconnected Encoder to Attention Decoder Framework
for Vertebrae Segmentation via 3D Volumetric CT Images [1.8146155083014204]
本稿では,3次元容積CT画像を用いた新しい椎骨分割法を提案する。
提案モデルは,ミニバッチトレーニング性能の最適化にレイヤ正規化を用いた,エンコーダからデコーダへの構造に基づく。
実験の結果,本モデルは他の医学的意味セグメンテーション法と比較して競争力が得られた。
論文 参考訳(メタデータ) (2021-04-08T12:09:16Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
本研究は,大腸内視鏡検査における画像分割,特に正確なポリープ検出とセグメンテーションを扱う。
イメージセグメンテーションの基本アーキテクチャはエンコーダとデコーダで構成されている。
我々はデコーダのバックボーンを変更することで得られるDeepLabアーキテクチャのバリエーションを比較した。
論文 参考訳(メタデータ) (2021-04-02T02:07:37Z) - DoDNet: Learning to segment multi-organ and tumors from multiple
partially labeled datasets [102.55303521877933]
本稿では,複数の臓器と腫瘍を部分的にラベル付けしたデータセット上に分割する動的オンデマンドネットワーク(DoDNet)を提案する。
DoDNetは共有エンコーダデコーダアーキテクチャ、タスク符号化モジュール、動的畳み込みフィルタを生成するコントローラ、そして単一だが動的セグメンテーションヘッドで構成されている。
論文 参考訳(メタデータ) (2020-11-20T04:56:39Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。