論文の概要: Event-based Structure-from-Orbit
- arxiv url: http://arxiv.org/abs/2405.06216v1
- Date: Fri, 10 May 2024 03:02:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:47:25.801653
- Title: Event-based Structure-from-Orbit
- Title(参考訳): Event-based Structure-from-Orbit
- Authors: Ethan Elms, Yasir Latif, Tae Ha Park, Tat-Jun Chin,
- Abstract要約: ロボット工学や視覚に基づくナビゲーションの応用には、静的カメラの前で円形または回転する物体の3次元認識が必要である。
静的なイベントカメラから観測された高速回転物体の3次元構造を再構成するイベントベース構造(eSf)を提案する。
- 参考スコア(独自算出の注目度): 23.97673114572094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event sensors offer high temporal resolution visual sensing, which makes them ideal for perceiving fast visual phenomena without suffering from motion blur. Certain applications in robotics and vision-based navigation require 3D perception of an object undergoing circular or spinning motion in front of a static camera, such as recovering the angular velocity and shape of the object. The setting is equivalent to observing a static object with an orbiting camera. In this paper, we propose event-based structure-from-orbit (eSfO), where the aim is to simultaneously reconstruct the 3D structure of a fast spinning object observed from a static event camera, and recover the equivalent orbital motion of the camera. Our contributions are threefold: since state-of-the-art event feature trackers cannot handle periodic self-occlusion due to the spinning motion, we develop a novel event feature tracker based on spatio-temporal clustering and data association that can better track the helical trajectories of valid features in the event data. The feature tracks are then fed to our novel factor graph-based structure-from-orbit back-end that calculates the orbital motion parameters (e.g., spin rate, relative rotational axis) that minimize the reprojection error. For evaluation, we produce a new event dataset of objects under spinning motion. Comparisons against ground truth indicate the efficacy of eSfO.
- Abstract(参考訳): イベントセンサーは、高時間分解能視覚センシングを提供するため、動きのぼやけに悩まされることなく、高速な視覚現象を知覚するのに理想的である。
ロボット工学や視覚に基づくナビゲーションの応用には、物体の角速度や形状の回復など、静止カメラの前で円や回転する物体の3次元認識が必要である。
この設定は、静止物体を軌道カメラで観察するのと同じである。
本稿では、静的なイベントカメラから観測された高速回転物体の3次元構造を同時に再構築し、カメラの等価な軌道運動を復元するイベントベース構造(eSfO)を提案する。
我々の貢献は3つある: 最先端のイベント特徴トラッカは回転運動による周期的自己閉塞を扱えないので、時空間クラスタリングとデータアソシエーションに基づく新しいイベント特徴トラッカを開発し、イベントデータ中の有効な特徴のヘリカルな軌跡をよりよく追跡することができる。
特徴トラックは、軌道の運動パラメータ(例えば、スピン速度、相対回転軸)を計算し、再投射誤差を最小化する。
評価のために、回転運動下でのオブジェクトの新しいイベントデータセットを作成する。
地中真実との比較はeSfOの有効性を示す。
関連論文リスト
- JSTR: Joint Spatio-Temporal Reasoning for Event-based Moving Object
Detection [17.3397709143323]
イベントベースの移動オブジェクト検出は、静的なバックグラウンドと移動オブジェクトが混在する難しいタスクである。
イベントベース移動物体検出のための新しい共同時間推論法を提案する。
論文 参考訳(メタデータ) (2024-03-12T09:22:52Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
異なる時間軸に沿った物体の運動キューが3次元多物体追跡において重要であることが判明した。
3つの動き認識コンポーネントからなるフレームワークであるMoMA-M3Tを提案する。
我々はnuScenesとKITTIデータセットに関する広範な実験を行い、MoMA-M3Tが最先端の手法と競合する性能を発揮することを実証した。
論文 参考訳(メタデータ) (2023-08-22T17:53:58Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
テンポラルな文グラウンドディングは、与えられた文クエリに従って、意図しないビデオのターゲットセグメントをセマンティックにローカライズすることを目的としている。
これまでのほとんどの研究は、ビデオ全体のフレーム全体のフレームレベルの特徴を学習することに集中しており、それらをテキスト情報と直接一致させる。
我々は,光フロー誘導型モーションアウェア,検出ベース外観アウェア,3D認識オブジェクトレベル機能を備えた,動き誘導型3Dセマンティック推論ネットワーク(MA3SRN)を提案する。
論文 参考訳(メタデータ) (2022-03-06T13:57:09Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
イベントベースカメラで取得したオブジェクトを独立に識別する手法を開発した。
この方法は、予想される移動物体の数を事前に決定することなく、技術状態よりも同等以上の性能を発揮する。
論文 参考訳(メタデータ) (2020-12-16T04:06:02Z) - e-TLD: Event-based Framework for Dynamic Object Tracking [23.026432675020683]
本稿では,一般的な追跡条件下での移動イベントカメラを用いた長期オブジェクト追跡フレームワークを提案する。
このフレームワークは、オンライン学習を伴うオブジェクトの識別表現を使用し、ビューのフィールドに戻るとオブジェクトを検出し、追跡する。
論文 参考訳(メタデータ) (2020-09-02T07:08:56Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
イベントベースオブジェクト追跡のためのパラメトリックオブジェクトレベルの動き/変換モデルを学習し、回帰する新しいディープニューラルネットワークを提案する。
この目的を達成するために,線形時間減衰表現を用いた同期時間曲面を提案する。
我々は、TSLTDフレームのシーケンスを新しい網膜運動回帰ネットワーク(RMRNet)に供給し、エンド・ツー・エンドの5-DoFオブジェクト・モーション・レグレッションを実行する。
論文 参考訳(メタデータ) (2020-02-14T08:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。