SKVQ: Sliding-window Key and Value Cache Quantization for Large Language Models
- URL: http://arxiv.org/abs/2405.06219v3
- Date: Tue, 12 Nov 2024 08:18:45 GMT
- Title: SKVQ: Sliding-window Key and Value Cache Quantization for Large Language Models
- Authors: Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, Dahua Lin,
- Abstract summary: SKVQ stands for sliding-window KV cache quantization.
S KVQ rearranges the channels of the KV cache in order to improve the similarity of channels in quantization groups.
It is possible to process context lengths of up to 1M on an 80GB memory GPU for a 7b model and up to 7 times faster decoding.
- Score: 43.22490117833939
- License:
- Abstract: Large language models (LLMs) can now handle longer sequences of tokens, enabling complex tasks like book understanding and generating lengthy novels. However, the key-value (KV) cache required for LLMs consumes substantial memory as context length increasing, becoming the bottleneck for deployment. In this paper, we present a strategy called SKVQ, which stands for sliding-window KV cache quantization, to address the issue of extremely low bitwidth KV cache quantization. To achieve this, SKVQ rearranges the channels of the KV cache in order to improve the similarity of channels in quantization groups, and applies clipped dynamic quantization at the group level. Additionally, SKVQ ensures that the most recent window tokens in the KV cache are preserved with high precision. This helps maintain the accuracy of a small but important portion of the KV cache.SKVQ achieves high compression ratios while maintaining accuracy. Our evaluation on LLMs demonstrates that SKVQ surpasses previous quantization approaches, allowing for quantization of the KV cache to 2-bit keys and 1.5-bit values with minimal loss of accuracy. With SKVQ, it is possible to process context lengths of up to 1M on an 80GB memory GPU for a 7b model and up to 7 times faster decoding.
Related papers
- KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios [13.144156413032896]
We introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression.
We show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability.
Our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
arXiv Detail & Related papers (2024-09-16T17:36:50Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
We investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing.
Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers.
Motivated by these insights, we developed Pyramid KV, a novel and effective KV cache compression method.
arXiv Detail & Related papers (2024-06-04T07:51:30Z) - KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization [34.824534775022144]
We propose Coupled Quantization (CQ) as a technique for KV cache compression.
CQ couples multiple key/value channels together to exploit their inter-dependency and encode the activations in a more information-efficient manner.
We demonstrate that CQ can preserve model quality with KV cache quantized down to 1-bit.
arXiv Detail & Related papers (2024-05-07T00:25:20Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
A bottleneck in model deployment emerges due to the linear expansion of the Key-Value cache with the context length.
We propose QAQ, a Quality Adaptive Quantization scheme for the KV cache.
arXiv Detail & Related papers (2024-03-07T16:42:37Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMs are seeing growing use for applications which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference.
Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in sub-4-bit precision.
Our work, KVQuant, facilitates low precision KV cache quantization by incorporating several novel methods.
arXiv Detail & Related papers (2024-01-31T18:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.