Learning to Solve Geometry Problems via Simulating Human Dual-Reasoning Process
- URL: http://arxiv.org/abs/2405.06232v1
- Date: Fri, 10 May 2024 03:53:49 GMT
- Title: Learning to Solve Geometry Problems via Simulating Human Dual-Reasoning Process
- Authors: Tong Xiao, Jiayu Liu, Zhenya Huang, Jinze Wu, Jing Sha, Shijin Wang, Enhong Chen,
- Abstract summary: Geometry Problem Solving (GPS) has attracted much attention in recent years.
It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning.
Existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning.
- Score: 84.49427910920008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometry Problem Solving (GPS), which is a classic and challenging math problem, has attracted much attention in recent years. It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning. However, existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning. In this paper, inspired by dual-process theory, we propose a Dual-Reasoning Geometry Solver (DualGeoSolver) to simulate the dual-reasoning process of humans for GPS. Specifically, we construct two systems in DualGeoSolver, namely Knowledge System and Inference System. Knowledge System controls an implicit reasoning process, which is responsible for providing diagram information and geometry knowledge according to a step-wise reasoning goal generated by Inference System. Inference System conducts an explicit reasoning process, which specifies the goal in each reasoning step and applies the knowledge to generate program tokens for resolving it. The two systems carry out the above process iteratively, which behaves more in line with human cognition. We conduct extensive experiments on two benchmark datasets, GeoQA and GeoQA+. The results demonstrate the superiority of DualGeoSolver in both solving accuracy and robustness from explicitly modeling human reasoning process and knowledge application.
Related papers
- Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - FGeo-DRL: Deductive Reasoning for Geometric Problems through Deep
Reinforcement Learning [1.137457877869062]
We build a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning.
The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods.
Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40%.
arXiv Detail & Related papers (2024-02-14T09:48:39Z) - FormalGeo: An Extensible Formalized Framework for Olympiad Geometric
Problem Solving [9.73597821684857]
This is the first paper in a series of work we have accomplished over the past three years.
In this paper, we have constructed a consistent formal plane geometry system.
This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning.
arXiv Detail & Related papers (2023-10-27T09:55:12Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
We propose a novel contrastive pre-training approach for mathematical question representations, namely QuesCo.
We first design two-level question augmentations, including content-level and structure-level, which generate literally diverse question pairs with similar purposes.
Then, to fully exploit hierarchical information of knowledge concepts, we propose a knowledge hierarchy-aware rank strategy.
arXiv Detail & Related papers (2023-01-18T14:23:29Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
Two main geometry problems: calculation and proving, are usually treated as two specific tasks.
We construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems.
We also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously.
arXiv Detail & Related papers (2022-12-06T04:37:51Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.