FGeo-DRL: Deductive Reasoning for Geometric Problems through Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2402.09051v2
- Date: Thu, 15 Feb 2024 04:50:52 GMT
- Title: FGeo-DRL: Deductive Reasoning for Geometric Problems through Deep
Reinforcement Learning
- Authors: Jia Zou, Xiaokai Zhang, Yiming He, Na Zhu, Tuo Leng
- Abstract summary: We build a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning.
The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods.
Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40%.
- Score: 1.137457877869062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human-like automatic deductive reasoning has always been one of the most
challenging open problems in the interdiscipline of mathematics and artificial
intelligence. This paper is the third in a series of our works. We built a
neural-symbolic system, called FGeoDRL, to automatically perform human-like
geometric deductive reasoning. The neural part is an AI agent based on
reinforcement learning, capable of autonomously learning problem-solving
methods from the feedback of a formalized environment, without the need for
human supervision. It leverages a pre-trained natural language model to
establish a policy network for theorem selection and employ Monte Carlo Tree
Search for heuristic exploration. The symbolic part is a reinforcement learning
environment based on geometry formalization theory and FormalGeo, which models
GPS as a Markov Decision Process. In this formal symbolic system, the known
conditions and objectives of the problem form the state space, while the set of
theorems forms the action space. Leveraging FGeoDRL, we have achieved readable
and verifiable automated solutions to geometric problems. Experiments conducted
on the formalgeo7k dataset have achieved a problem-solving success rate of
86.40%. The project is available at https://github.com/PersonNoName/FGeoDRL.
Related papers
- Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - Autoformalizing Euclidean Geometry [74.72212706513318]
We introduce a neuro-symbolic framework for autoformalizing Euclidean geometry.
One challenge is that informal proofs rely on diagrams, leaving gaps in texts that are hard to formalize.
We provide automatic semantic evaluation for autoformalized theorem statements.
arXiv Detail & Related papers (2024-05-27T14:35:10Z) - Learning to Solve Geometry Problems via Simulating Human Dual-Reasoning Process [84.49427910920008]
Geometry Problem Solving (GPS) has attracted much attention in recent years.
It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning.
Existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning.
arXiv Detail & Related papers (2024-05-10T03:53:49Z) - FGeo-HyperGNet: Geometric Problem Solving Integrating Formal Symbolic System and Hypergraph Neural Network [2.897954624664043]
We build a neural-symbolic system to automatically perform human-like geometric deductive reasoning.
We achieved a step-wised accuracy of 87.65% and an overall accuracy of 85.53% on the formalgeo7k datasets.
arXiv Detail & Related papers (2024-02-18T05:23:15Z) - FGeo-TP: A Language Model-Enhanced Solver for Geometry Problems [1.137457877869062]
We introduce FGeo-TP (Theorem Predictor), which utilizes the language model to predict theorem sequences for solving geometry problems.
Our results demonstrate a significant increase in the problem-solving rate of the language model-enhanced FGeo-TP on the FormalGeo7k dataset.
arXiv Detail & Related papers (2024-02-14T09:44:28Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - FormalGeo: An Extensible Formalized Framework for Olympiad Geometric
Problem Solving [9.73597821684857]
This is the first paper in a series of work we have accomplished over the past three years.
In this paper, we have constructed a consistent formal plane geometry system.
This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning.
arXiv Detail & Related papers (2023-10-27T09:55:12Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.