Precise Apple Detection and Localization in Orchards using YOLOv5 for Robotic Harvesting Systems
- URL: http://arxiv.org/abs/2405.06260v1
- Date: Fri, 10 May 2024 06:17:00 GMT
- Title: Precise Apple Detection and Localization in Orchards using YOLOv5 for Robotic Harvesting Systems
- Authors: Jiang Ziyue, Yin Bo, Lu Boyun,
- Abstract summary: We propose a novel approach to apple detection and position estimation utilizing an object detection model, YOLOv5.
Our results demonstrate that the YOLOv5 model outperforms its counterparts, achieving an impressive apple detection accuracy of approximately 85%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of agricultural robotics holds immense promise for transforming fruit harvesting practices, particularly within the apple industry. The accurate detection and localization of fruits are pivotal for the successful implementation of robotic harvesting systems. In this paper, we propose a novel approach to apple detection and position estimation utilizing an object detection model, YOLOv5. Our primary objective is to develop a robust system capable of identifying apples in complex orchard environments and providing precise location information. To achieve this, we curated an autonomously labeled dataset comprising diverse apple tree images, which was utilized for both training and evaluation purposes. Through rigorous experimentation, we compared the performance of our YOLOv5-based system with other popular object detection models, including SSD. Our results demonstrate that the YOLOv5 model outperforms its counterparts, achieving an impressive apple detection accuracy of approximately 85%. We believe that our proposed system's accurate apple detection and position estimation capabilities represent a significant advancement in agricultural robotics, laying the groundwork for more efficient and sustainable fruit harvesting practices.
Related papers
- Enhancing Fruit and Vegetable Detection in Unconstrained Environment with a Novel Dataset [4.498047714838568]
This paper presents an end-to-end pipeline for detecting and localizing fruits and vegetables in real-world scenarios.
We have curated a dataset named FRUVEG67 that includes images of 67 classes of fruits and vegetables captured in unconstrained scenarios.
For detection, we introduce the Fruit and Vegetable Detection Network (FVDNet), an ensemble version of YOLOv7 featuring three distinct grid configurations.
arXiv Detail & Related papers (2024-09-20T08:46:03Z) - Fusion-Driven Tree Reconstruction and Fruit Localization: Advancing Precision in Agriculture [2.338903291171288]
This study introduces an innovative methodology that harnesses the synergy of RGB imagery, LiDAR, and IMU data, to achieve intricate tree reconstructions.
Experiments have been carried out in both a controlled environment and an actual peach orchard.
arXiv Detail & Related papers (2023-10-23T17:44:59Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually.
We propose to improve phrase grounding models' ability on localizing the active objects by: learning the role of objects undergoing change and extracting them accurately from the instructions.
We evaluate our framework on Ego4D and Epic-Kitchens datasets.
arXiv Detail & Related papers (2023-10-23T16:14:05Z) - Key Point-based Orientation Estimation of Strawberries for Robotic Fruit
Picking [8.657107511095242]
We introduce a novel key-point-based fruit orientation estimation method allowing for the prediction of 3D orientation from 2D images directly.
Our proposed method achieves state-of-the-art performance with an average error as low as $8circ$, improving predictions by $sim30%$ compared to previous work presented incitewagnerefficient.
arXiv Detail & Related papers (2023-10-17T15:12:11Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Panoptic Mapping with Fruit Completion and Pose Estimation for
Horticultural Robots [33.21287030243106]
Monitoring plants and fruits at high resolution play a key role in the future of agriculture.
Accurate 3D information can pave the way to a diverse number of robotic applications in agriculture ranging from autonomous harvesting to precise yield estimation.
We address the problem of jointly estimating complete 3D shapes of fruit and their pose in a 3D multi-resolution map built by a mobile robot.
arXiv Detail & Related papers (2023-03-15T20:41:24Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Sim-to-Real 6D Object Pose Estimation via Iterative Self-training for
Robotic Bin-picking [98.5984733963713]
We propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping.
We establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network.
This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data.
arXiv Detail & Related papers (2022-04-14T15:54:01Z) - Geometry-Aware Fruit Grasping Estimation for Robotic Harvesting in
Orchards [6.963582954232132]
geometry-aware network, A3N, is proposed to perform end-to-end instance segmentation and grasping estimation.
We implement a global-to-local scanning strategy, which enables robots to accurately recognise and retrieve fruits in field environments.
Overall, the robotic system achieves success rate of harvesting ranging from 70% - 85% in field harvesting experiments.
arXiv Detail & Related papers (2021-12-08T16:17:26Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction [68.50217234419922]
This paper investigates the issues that arise in state-of-the-art autonomy stacks under localization error.
We design a system that jointly performs perception, prediction, and localization.
Our architecture is able to reuse computation between both tasks, and is thus able to correct localization errors efficiently.
arXiv Detail & Related papers (2021-01-17T17:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.