Aspect-oriented Consumer Health Answer Summarization
- URL: http://arxiv.org/abs/2405.06295v1
- Date: Fri, 10 May 2024 07:52:43 GMT
- Title: Aspect-oriented Consumer Health Answer Summarization
- Authors: Rochana Chaturvedi, Abari Bhattacharya, Shweta Yadav,
- Abstract summary: Community Question-Answering (CQA) forums have revolutionized how people seek information, especially those related to their healthcare needs.
There can be several answers in response to a single query, which makes it hard to grasp the key information related to the specific health concern.
Our research focuses on aspect-based summarization of health answers to address this limitation.
- Score: 2.298110639419913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Community Question-Answering (CQA) forums have revolutionized how people seek information, especially those related to their healthcare needs, placing their trust in the collective wisdom of the public. However, there can be several answers in response to a single query, which makes it hard to grasp the key information related to the specific health concern. Typically, CQA forums feature a single top-voted answer as a representative summary for each query. However, a single answer overlooks the alternative solutions and other information frequently offered in other responses. Our research focuses on aspect-based summarization of health answers to address this limitation. Summarization of responses under different aspects such as suggestions, information, personal experiences, and questions can enhance the usability of the platforms. We formalize a multi-stage annotation guideline and contribute a unique dataset comprising aspect-based human-written health answer summaries. We build an automated multi-faceted answer summarization pipeline with this dataset based on task-specific fine-tuning of several state-of-the-art models. The pipeline leverages question similarity to retrieve relevant answer sentences, subsequently classifying them into the appropriate aspect type. Following this, we employ several recent abstractive summarization models to generate aspect-based summaries. Finally, we present a comprehensive human analysis and find that our summaries rank high in capturing relevant content and a wide range of solutions.
Related papers
- No perspective, no perception!! Perspective-aware Healthcare Answer Summarization [14.056550161714117]
Healthcare Community Question Answering (CQA) forums offer an accessible platform for individuals seeking information on various healthcare-related topics.
Answers on these forums are typically diverse and prone to off-topic discussions.
It can be challenging for readers to sift through numerous answers and extract meaningful insights.
This paper proposes a novel task of perspective-specific answer summarization.
arXiv Detail & Related papers (2024-06-13T07:35:37Z) - QAGCF: Graph Collaborative Filtering for Q&A Recommendation [58.21387109664593]
Question and answer (Q&A) platforms usually recommend question-answer pairs to meet users' knowledge acquisition needs.
This makes user behaviors more complex, and presents two challenges for Q&A recommendation.
We introduce Question & Answer Graph Collaborative Filtering (QAGCF), a graph neural network model that creates separate graphs for collaborative and semantic views.
arXiv Detail & Related papers (2024-06-07T10:52:37Z) - Concise Answers to Complex Questions: Summarization of Long-form Answers [27.190319030219285]
We conduct a user study on summarized answers generated from state-of-the-art models and our newly proposed extract-and-decontextualize approach.
We find a large proportion of long-form answers can be adequately summarized by at least one system, while complex and implicit answers are challenging to compress.
We observe that decontextualization improves the quality of the extractive summary, exemplifying its potential in the summarization task.
arXiv Detail & Related papers (2023-05-30T17:59:33Z) - MQAG: Multiple-choice Question Answering and Generation for Assessing
Information Consistency in Summarization [55.60306377044225]
State-of-the-art summarization systems can generate highly fluent summaries.
These summaries, however, may contain factual inconsistencies and/or information not present in the source.
We introduce an alternative scheme based on standard information-theoretic measures in which the information present in the source and summary is directly compared.
arXiv Detail & Related papers (2023-01-28T23:08:25Z) - AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer
Summarization [73.91543616777064]
Community Question Answering (CQA) fora such as Stack Overflow and Yahoo! Answers contain a rich resource of answers to a wide range of community-based questions.
One goal of answer summarization is to produce a summary that reflects the range of answer perspectives.
This work introduces a novel dataset of 4,631 CQA threads for answer summarization, curated by professional linguists.
arXiv Detail & Related papers (2021-11-11T21:48:02Z) - Question-aware Transformer Models for Consumer Health Question
Summarization [20.342580435464072]
We develop an abstractive question summarization model that leverages the semantic interpretation of a question via recognition of medical entities.
When evaluated on the MeQSum benchmark corpus, our framework outperformed the state-of-the-art method by 10.2 ROUGE-L points.
arXiv Detail & Related papers (2021-06-01T04:21:31Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
We present a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text.
We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers.
arXiv Detail & Related papers (2021-05-07T00:12:34Z) - GooAQ: Open Question Answering with Diverse Answer Types [63.06454855313667]
We present GooAQ, a large-scale dataset with a variety of answer types.
This dataset contains over 5 million questions and 3 million answers collected from Google.
arXiv Detail & Related papers (2021-04-18T05:40:39Z) - Multi-Perspective Abstractive Answer Summarization [76.10437565615138]
Community Question Answering forums contain a rich resource of answers to a wide range of questions.
The goal of multi-perspective answer summarization is to produce a summary that includes all perspectives of the answer.
This work introduces a novel dataset creation method to automatically create multi-perspective, bullet-point abstractive summaries.
arXiv Detail & Related papers (2021-04-17T13:15:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.