論文の概要: Open Access Battle Damage Detection via Pixel-Wise T-Test on Sentinel-1 Imagery
- arxiv url: http://arxiv.org/abs/2405.06323v1
- Date: Fri, 10 May 2024 08:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:17:47.067691
- Title: Open Access Battle Damage Detection via Pixel-Wise T-Test on Sentinel-1 Imagery
- Title(参考訳): センチネル-1画像を用いたPixel-Wise T-Testによるオープンアクセス戦闘損傷検出
- Authors: Ollie Ballinger,
- Abstract要約: 本稿では,建物損傷検出のための新しい手法を提案する。
Pixel-Wise T-Test (PWTT) は、一定時間間隔で広範囲にわたる正確な衝突損傷推定を生成する。
精度は、ウクライナ、パレスチナ、シリア、イラクの12都市にまたがる50万以上の建物フットプリントの当初のデータセットを用いて評価されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the context of recent, highly destructive conflicts in Gaza and Ukraine, reliable estimates of building damage are essential for an informed public discourse, human rights monitoring, and humanitarian aid provision. Given the contentious nature of conflict damage assessment, these estimates must be fully reproducible, explainable, and derived from open access data. This paper introduces a new method for building damage detection-- the Pixel-Wise T-Test (PWTT)-- that satisfies these conditions. Using a combination of freely-available synthetic aperture radar imagery and statistical change detection, the PWTT generates accurate conflict damage estimates across a wide area at regular time intervals. Accuracy is assessed using an original dataset of over half a million labeled building footprints spanning 12 cities across Ukraine, Palestine, Syria, and Iraq. Despite being simple and lightweight, the algorithm achieves building-level accuracy statistics (AUC=0.88 across Ukraine, 0.81 in Gaza) rivalling state of the art methods that use deep learning and high resolution imagery. The workflow is open source and deployed entirely within the Google Earth Engine environment, allowing for the generation of interactive Battle Damage Dashboards for Ukraine and Gaza that update in near-real time, allowing the public and humanitarian practitioners to immediately get estimates of damaged buildings in a given area.
- Abstract(参考訳): 最近のガザとウクライナの非常に破壊的な紛争の文脈では、建築被害の信頼できる推定は、情報公開の談話、人権監視、人道支援の条項に不可欠である。
紛争損害評価の論争的な性質を考えると、これらの見積もりは完全に再現可能で、説明可能で、オープンアクセスデータから導出されなければならない。
本稿では,Pixel-Wise T-Test (PWTT) による損傷検出手法を提案する。
可利用な合成開口レーダ画像と統計的変化検出を組み合わせることで、PWTTは一定時間間隔で広範囲にわたる正確な衝突損傷推定を生成する。
精度は、ウクライナ、パレスチナ、シリア、イラクの12都市にまたがる50万以上の建物フットプリントの当初のデータセットを用いて評価されている。
単純で軽量であるにもかかわらず、このアルゴリズムはビルレベルの精度統計(ウクライナ全土でAUC=0.88、ガザで0.81)を達成し、ディープラーニングと高解像度画像を使用する最先端の手法に対抗している。
ワークフローはオープンソースで、Google Earth Engine環境内に完全に展開されており、ウクライナとガザのインタラクティブなバトルダメージダッシュボードをほぼリアルタイムで更新することができる。
関連論文リスト
- Building Damage Assessment in Conflict Zones: A Deep Learning Approach Using Geospatial Sub-Meter Resolution Data [9.146968506196446]
我々は,ウクライナのマリプオール市における,紛争前の画像と紛争後の画像を用いた注釈付きデータセットを構築した。
次に、ゼロショットおよび学習シナリオの両方において、CNNモデルの転送可能性について検討する。
これは、サブメートル分解能画像を用いて戦闘帯の建物損傷を評価する最初の研究である。
論文 参考訳(メタデータ) (2024-10-07T07:26:38Z) - An Open-Source Tool for Mapping War Destruction at Scale in Ukraine using Sentinel-1 Time Series [16.900687593159066]
本研究では、戦争による建物被害を推定するためのスケーラブルで伝達可能な手法を提案する。
まず、SAR(Synthetic Aperture Radar)衛星画像時系列から画素単位の破壊確率を出力する機械学習モデルを訓練する。
次に、オープン・ビル・フットプリントを用いて、これらの評価を後処理し、建物ごとの最終的な損傷推定値を得る。
論文 参考訳(メタデータ) (2024-06-04T17:24:19Z) - QuickQuakeBuildings: Post-earthquake SAR-Optical Dataset for Quick Damaged-building Detection [5.886875818210989]
このレターでは, 地震被害を受けた建物を, SAR(Synthetic Aperture Radar)と光学画像から検出するための最初のデータセットを提示する。
我々は、SARと光学データの両方のコアギスター化された建物の足跡と衛星画像パッチのデータセットを提供し、400万以上の建物を包含する。
論文 参考訳(メタデータ) (2023-12-11T18:19:36Z) - Causality-informed Rapid Post-hurricane Building Damage Detection in
Large Scale from InSAR Imagery [6.331801334141028]
ハリケーンによる建物被害のタイムリーかつ正確な評価は、ハリケーン後の効果的な応答と復旧に不可欠である。
近年,リモートセンシング技術は,災害発生直後の大規模光合成開口レーダ(InSAR)画像データを提供する。
これらのInSAR画像は、しばしば、人為的活動と同様に、建物損傷、洪水・風による植生変化、および建物損傷の同時発生または同時発生によって引き起こされる、非常に騒々しく混ざった信号を含んでいる。
本稿では,InSAR画像からハリケーン後の建物被害の迅速検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T18:56:05Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
本稿では,低解像度衛星画像のみを用いた建物被覆量の推定手法を提案する。
本モデルでは, 世界中の開発レベルの異なる地域において, 建築範囲の予測において最大0.968の判定係数を達成している。
論文 参考訳(メタデータ) (2023-01-04T05:19:33Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Monitoring War Destruction from Space: A Machine Learning Approach [1.0149624140985478]
紛争地帯における建物破壊に関する既存のデータは、目撃者の報告や手動による検出に依存している。
本稿では,ディープラーニング技術を用いた高解像度衛星画像の自動破壊計測手法を提案する。
我々は、シリア内戦と国内の主要都市における被害の進展にこの方法を適用した。
論文 参考訳(メタデータ) (2020-10-12T19:01:20Z) - ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head
Pose and Gaze Variation [52.5465548207648]
ETH-XGazeは100万以上の高解像度画像からなる新しい視線推定データセットである。
我々のデータセットは、異なる頭部ポーズと視線角度で視線推定手法のロバスト性を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-31T04:15:53Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。