Compression-Realized Deep Structural Network for Video Quality Enhancement
- URL: http://arxiv.org/abs/2405.06342v4
- Date: Tue, 20 Aug 2024 13:35:19 GMT
- Title: Compression-Realized Deep Structural Network for Video Quality Enhancement
- Authors: Hanchi Sun, Xiaohong Liu, Xinyang Jiang, Yifei Shen, Dongsheng Li, Xiongkuo Min, Guangtao Zhai,
- Abstract summary: This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
- Score: 78.13020206633524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the task of quality enhancement for compressed videos. Although deep network-based video restorers achieve impressive progress, most of the existing methods lack a structured design to optimally leverage the priors within compression codecs. Since the quality degradation of the video is primarily induced by the compression algorithm, a new paradigm is urgently needed for a more ``conscious'' process of quality enhancement. As a result, we propose the Compression-Realized Deep Structural Network (CRDS), introducing three inductive biases aligned with the three primary processes in the classic compression codec, merging the strengths of classical encoder architecture with deep network capabilities. Inspired by the residual extraction and domain transformation process in the codec, a pre-trained Latent Degradation Residual Auto-Encoder is proposed to transform video frames into a latent feature space, and the mutual neighborhood attention mechanism is integrated for precise motion estimation and residual extraction. Furthermore, drawing inspiration from the quantization noise distribution of the codec, CRDS proposes a novel Progressive Denoising framework with intermediate supervision that decomposes the quality enhancement into a series of simpler denoising sub-tasks. Experimental results on datasets like LDV 2.0 and MFQE 2.0 indicate our approach surpasses state-of-the-art models.
Related papers
- $ε$-VAE: Denoising as Visual Decoding [61.29255979767292]
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space.
Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input.
We propose denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder.
We evaluate our approach by assessing both reconstruction (rFID) and generation quality (
arXiv Detail & Related papers (2024-10-05T08:27:53Z) - Implicit-explicit Integrated Representations for Multi-view Video
Compression [40.86402535896703]
We propose an implicit-explicit integrated representation for multi-view video compression.
The proposed framework combines the strengths of both implicit neural representation and explicit 2D datasets.
Our proposed framework can achieve comparable or even superior performance to the latest multi-view video compression standard MIV.
arXiv Detail & Related papers (2023-11-29T04:15:57Z) - High Visual-Fidelity Learned Video Compression [6.609832462227998]
We propose a novel High Visual-Fidelity Learned Video Compression framework (HVFVC)
Specifically, we design a novel confidence-based feature reconstruction method to address the issue of poor reconstruction in newly-emerged regions.
Extensive experiments have shown that the proposed HVFVC achieves excellent perceptual quality, outperforming the latest VVC standard with only 50% required.
arXiv Detail & Related papers (2023-10-07T03:27:45Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.