論文の概要: Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL
- arxiv url: http://arxiv.org/abs/2405.06410v1
- Date: Fri, 10 May 2024 11:44:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:58:09.053460
- Title: Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL
- Title(参考訳): 構造化意味論の捕捉におけるLLMの可能性と限界:SRLを事例として
- Authors: Ning Cheng, Zhaohui Yan, Ziming Wang, Zhijie Li, Jiaming Yu, Zilong Zheng, Kewei Tu, Jinan Xu, Wenjuan Han,
- Abstract要約: 大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
- 参考スコア(独自算出の注目度): 78.80673954827773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
- Abstract(参考訳): 大きな言語モデル(LLM)は、言語理解を強化し、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
それでも、LLMが構造化セマンティクスを把握できる範囲で論争が続いている。
これを評価するために,LLMが構造的意味論を抽出する能力を探索するための基本課題としてセマンティック・ロール・ラベルリング(SRL)を提案する。
評価では、プロンプトSRLと呼ばれる数発のSRLパーサの作成につながるプロンプトSRLを用いる。
PromptSRLにより、LLMは自然言語を明示的な意味構造にマッピングすることができ、LLMの特性に解釈可能なウィンドウを提供する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
さらに、LLMの制限はC-argumentsなどで観測される。
最後に、エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに驚きます。
関連論文リスト
- Do LLMs Really Adapt to Domains? An Ontology Learning Perspective [2.0755366440393743]
大規模言語モデル(LLM)は、様々なアプリケーション領域において、様々な自然言語処理タスクに対して前例のない進歩を見せている。
近年の研究では、LLMが知識ベースコンプリート(KBC)やオントロジー学習(OL)などの語彙意味タスクに活用できることが示されている。
LLMは本当にドメインに適応し、構造化知識の抽出に一貫性を持ち続けるのか、それとも推論の代わりに語彙感覚のみを学ぶのか?
論文 参考訳(メタデータ) (2024-07-29T13:29:43Z) - LLMs' Understanding of Natural Language Revealed [0.0]
大規模言語モデル(LLM)は、大規模言語におけるボトムアップ、データ駆動のリバースエンジニアリングにおける大規模な実験の結果である。
私たちはLLMの言語理解能力、彼らが想定する砦をテストすることに重点を置きます。
論文 参考訳(メタデータ) (2024-07-29T01:21:11Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
大規模モデル(LLM)は、幅広いタスクを解く上で大きな成果を上げている。
我々は、記述論理(DL-Lite)を理解するLLMの能力を実証的に分析する。
LLMは概念と役割の形式的構文とモデル理論的意味論を理解する。
論文 参考訳(メタデータ) (2024-06-25T13:16:34Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。