Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Bénard Convection
- URL: http://arxiv.org/abs/2405.06425v1
- Date: Fri, 10 May 2024 12:15:02 GMT
- Title: Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Bénard Convection
- Authors: Thorben Markmann, Michiel Straat, Barbara Hammer,
- Abstract summary: We use a Koopman-inspired architecture called the Linear Recurrent Autoencoder Network (LRAN) for learning reduced-order dynamics in convection flows.
A traditional fluid dynamics method, the Kernel Dynamic Mode Decomposition (KDMD) is used to compare the LRAN.
We obtained more accurate predictions with the LRAN than with KDMD in the most turbulent setting.
- Score: 4.248022697109535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several related works have introduced Koopman-based Machine Learning architectures as a surrogate model for dynamical systems. These architectures aim to learn non-linear measurements (also known as observables) of the system's state that evolve by a linear operator and are, therefore, amenable to model-based linear control techniques. So far, mainly simple systems have been targeted, and Koopman architectures as reduced-order models for more complex dynamics have not been fully explored. Hence, we use a Koopman-inspired architecture called the Linear Recurrent Autoencoder Network (LRAN) for learning reduced-order dynamics in convection flows of a Rayleigh B\'enard Convection (RBC) system at different amounts of turbulence. The data is obtained from direct numerical simulations of the RBC system. A traditional fluid dynamics method, the Kernel Dynamic Mode Decomposition (KDMD), is used to compare the LRAN. For both methods, we performed hyperparameter sweeps to identify optimal settings. We used a Normalized Sum of Square Error measure for the quantitative evaluation of the models, and we also studied the model predictions qualitatively. We obtained more accurate predictions with the LRAN than with KDMD in the most turbulent setting. We conjecture that this is due to the LRAN's flexibility in learning complicated observables from data, thereby serving as a viable surrogate model for the main structure of fluid dynamics in turbulent convection settings. In contrast, KDMD was more effective in lower turbulence settings due to the repetitiveness of the convection flow. The feasibility of Koopman-based surrogate models for turbulent fluid flows opens possibilities for efficient model-based control techniques useful in a variety of industrial settings.
Related papers
- Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Towards extraction of orthogonal and parsimonious non-linear modes from
turbulent flows [0.0]
We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes.
Our approach is based on $beta$-variational autoencoders ($beta$-VAEs) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-09-03T13:38:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Operator Inference and Physics-Informed Learning of Low-Dimensional
Models for Incompressible Flows [5.756349331930218]
We suggest a new approach to learning structured low-order models for incompressible flow from data.
We show that learning dynamics of the velocity and pressure can be decoupled, thus leading to an efficient operator inference approach.
arXiv Detail & Related papers (2020-10-13T21:26:19Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.