Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
- URL: http://arxiv.org/abs/2506.22304v1
- Date: Fri, 27 Jun 2025 15:16:16 GMT
- Title: Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
- Authors: Erkan Turan, Aristotelis Siozopoulos, Maks Ovsjanikov,
- Abstract summary: Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models.<n>We propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory.
- Score: 26.912726794632732
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
Related papers
- FlowDAS: A Stochastic Interpolant-based Framework for Data Assimilation [15.64941169350615]
Data assimilation (DA) integrates observations with a dynamical model to estimate states of PDE-governed systems.<n>FlowDAS is a generative DA framework that uses interpolants to learn state transition dynamics.<n>We show that FlowDAS surpasses model-driven methods, neural operators, and score-based baselines in accuracy and physical plausibility.
arXiv Detail & Related papers (2025-01-13T05:03:41Z) - Local Flow Matching Generative Models [19.859984725284896]
Local Flow Matching is a computational framework for density estimation based on flow-based generative models.<n>$textttLFM$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models.<n>We demonstrate the improved training efficiency and competitive generative performance of $textttLFM$ compared to FM.
arXiv Detail & Related papers (2024-10-03T14:53:10Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Bénard Convection [4.248022697109535]
We use a Koopman-inspired architecture called the Linear Recurrent Autoencoder Network (LRAN) for learning reduced-order dynamics in convection flows.
A traditional fluid dynamics method, the Kernel Dynamic Mode Decomposition (KDMD) is used to compare the LRAN.
We obtained more accurate predictions with the LRAN than with KDMD in the most turbulent setting.
arXiv Detail & Related papers (2024-05-10T12:15:02Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Towards extraction of orthogonal and parsimonious non-linear modes from
turbulent flows [0.0]
We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes.
Our approach is based on $beta$-variational autoencoders ($beta$-VAEs) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-09-03T13:38:51Z) - Deep Learning Enhanced Dynamic Mode Decomposition [0.0]
We use convolutional autoencoder networks to simultaneously find optimal families of observables.
We also generate both accurate embeddings of the flow into a space of observables and immersions of the observables back into flow coordinates.
This network results in a global transformation of the flow and affords future state prediction via EDMD and the decoder network.
arXiv Detail & Related papers (2021-08-10T03:54:23Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
Conditional Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and interdimensional correlations.
We propose MotionFlow as a novel approach that autoregressively normalizes the output on the temporal input features.
We apply our method to different tasks, including prediction, motion prediction time series forecasting, and binary segmentation.
arXiv Detail & Related papers (2021-04-09T14:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.