論文の概要: MRSegmentator: Robust Multi-Modality Segmentation of 40 Classes in MRI and CT Sequences
- arxiv url: http://arxiv.org/abs/2405.06463v1
- Date: Fri, 10 May 2024 13:15:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:48:10.030205
- Title: MRSegmentator: Robust Multi-Modality Segmentation of 40 Classes in MRI and CT Sequences
- Title(参考訳): MRSegmentator:MRIおよびCTにおける40クラスのロバスト多モードセグメンテーション
- Authors: Hartmut Häntze, Lina Xu, Felix J. Dorfner, Leonhard Donle, Daniel Truhn, Hugo Aerts, Mathias Prokop, Bram van Ginneken, Alessa Hering, Lisa C. Adams, Keno K. Bressem,
- Abstract要約: このモデルは、英国バイオバンクの1200個の手動のMRIスキャン、221個の社内MRIスキャン、1228個のCTスキャンでトレーニングされた。
明確に定義された臓器のセグメンテーションにおいて高い精度を示し、Dice similarity Coefficient(DSC)スコアは左右の肺では0.97、心臓では0.95であった。
また、肝臓 (DSC: 0.96) や腎臓 (DSC: 0.95 left, 0.95 right) のような臓器の頑健性も示し、より可変性を示した。
- 参考スコア(独自算出の注目度): 4.000329151950926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: To introduce a deep learning model capable of multi-organ segmentation in MRI scans, offering a solution to the current limitations in MRI analysis due to challenges in resolution, standardized intensity values, and variability in sequences. Materials and Methods: he model was trained on 1,200 manually annotated MRI scans from the UK Biobank, 221 in-house MRI scans and 1228 CT scans, leveraging cross-modality transfer learning from CT segmentation models. A human-in-the-loop annotation workflow was employed to efficiently create high-quality segmentations. The model's performance was evaluated on NAKO and the AMOS22 dataset containing 600 and 60 MRI examinations. Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) was used to assess segmentation accuracy. The model will be open sourced. Results: The model showcased high accuracy in segmenting well-defined organs, achieving Dice Similarity Coefficient (DSC) scores of 0.97 for the right and left lungs, and 0.95 for the heart. It also demonstrated robustness in organs like the liver (DSC: 0.96) and kidneys (DSC: 0.95 left, 0.95 right), which present more variability. However, segmentation of smaller and complex structures such as the portal and splenic veins (DSC: 0.54) and adrenal glands (DSC: 0.65 left, 0.61 right) revealed the need for further model optimization. Conclusion: The proposed model is a robust, tool for accurate segmentation of 40 anatomical structures in MRI and CT images. By leveraging cross-modality learning and interactive annotation, the model achieves strong performance and generalizability across diverse datasets, making it a valuable resource for researchers and clinicians. It is open source and can be downloaded from https://github.com/hhaentze/MRSegmentator.
- Abstract(参考訳): 目的:MRIスキャンにおける多組織セグメンテーションが可能な深層学習モデルを導入し、解像度、標準化された強度値、配列の可変性といった課題によるMRI解析における現在の限界に対する解決策を提供する。
材料と方法:彼のモデルは、英国バイオバンクの1200個の手動注釈MRIスキャン、221個の社内MRIスキャン、1228個のCTスキャンで訓練され、CTセグメンテーションモデルからの相互モダリティ変換学習を活用している。
高品質なセグメンテーションを効率的に作成するために、Human-in-the-loopアノテーションワークフローが採用された。
このモデルの性能は, NAKOとAMOS22を用いた600, 60のMRI検査で評価した。
Dice similarity Coefficient (DSC) と Hausdorff Distance (HD) を用いてセグメンテーションの精度を評価した。
モデルはオープンソース化される予定だ。
結果: 左右肺のDice similarity Coefficient(DSC)スコアは0.97, 心臓の0.95であった。
また、肝臓 (DSC: 0.96) や腎臓 (DSC: 0.95 left, 0.95 right) のような臓器の頑健性も示し、より可変性を示した。
しかし,門脈や脾静脈 (DSC: 0.54) や副腎 (DSC: 0.65 左, 0.61 右) などのより小型で複雑な構造の分画は,さらなるモデル最適化の必要性を明らかにした。
結論: 提案モデルはMRIおよびCT画像における40の解剖学的構造を正確に区分けするための頑健なツールである。
相互モダリティ学習と対話的アノテーションを活用することで、さまざまなデータセット間での強力なパフォーマンスと一般化を実現し、研究者や臨床医にとって貴重なリソースとなる。
オープンソースで、https://github.com/hhaentze/MRSegmentator.comからダウンロードできる。
関連論文リスト
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
我々は,CTおよびMRIを用いたソフト・タウト・腫瘍(STT)のための,最小限の対話型深層学習に基づくセグメンテーション法を開発した。
この方法は、畳み込みニューラルネットワークの入力として、腫瘍の極端な境界付近で6つの点をクリックする必要がある。
論文 参考訳(メタデータ) (2024-02-12T16:15:28Z) - Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced
Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging [0.6597195879147557]
T2強調核磁気共鳴画像(MRI)と拡散強調画像(DWI)は頸部がん診断に欠かせない要素である。
拡張畳み込みと共有残差接続を多パラメータMRI画像の分離符号化に用いる新しいマルチヘッドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T19:41:21Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - A Novel Mask R-CNN Model to Segment Heterogeneous Brain Tumors through
Image Subtraction [0.0]
画像セグメンテーション(画像セグメンテーション)と呼ばれる放射線学者による手法を用いて機械学習モデルに適用し,より優れたセグメンテーションを証明した。
Mask R-CNNは、RSNA肺炎検出チャレンジデータセットで事前トレーニングされたResNetバックボーンであり、Brats 2020 Brain tumorデータセットでモデルをトレーニングすることができる。
DICE係数(F1スコア)、リコール、未タッチテストセットの精度による画像サブトラクションを伴わないモデルと比較することにより、画像サブトラクションの手法がいかにうまく機能するかを確認できる。
論文 参考訳(メタデータ) (2022-04-04T01:45:11Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
畳み込みニューラルネットワーク(CNN)は最先端の画像セグメンテーション技術である。
CNNはトレーニングに大量の注釈付きデータセットを必要とする。
自己教師型学習戦略は、トレーニングにラベルのないデータを活用することができる。
論文 参考訳(メタデータ) (2021-05-24T12:27:06Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。