Aspect-based Sentiment Evaluation of Chess Moves (ASSESS): an NLP-based Method for Evaluating Chess Strategies from Textbooks
- URL: http://arxiv.org/abs/2405.06499v1
- Date: Fri, 10 May 2024 14:23:43 GMT
- Title: Aspect-based Sentiment Evaluation of Chess Moves (ASSESS): an NLP-based Method for Evaluating Chess Strategies from Textbooks
- Authors: Haifa Alrdahi, Riza Batista-Navarro,
- Abstract summary: This study investigates the feasibility of using a modified sentiment analysis method as a means for evaluating chess moves based on text.
By extracting insights from move-action phrases, our approach aims to provide a more fine-grained and contextually aware chess move'-based sentiment classification.
- Score: 3.652509571098292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The chess domain is well-suited for creating an artificial intelligence (AI) system that mimics real-world challenges, including decision-making. Throughout the years, minimal attention has been paid to investigating insights derived from unstructured chess data sources. In this study, we examine the complicated relationships between multiple referenced moves in a chess-teaching textbook, and propose a novel method designed to encapsulate chess knowledge derived from move-action phrases. This study investigates the feasibility of using a modified sentiment analysis method as a means for evaluating chess moves based on text. Our proposed Aspect-Based Sentiment Analysis (ABSA) method represents an advancement in evaluating the sentiment associated with referenced chess moves. By extracting insights from move-action phrases, our approach aims to provide a more fine-grained and contextually aware `chess move'-based sentiment classification. Through empirical experiments and analysis, we evaluate the performance of our fine-tuned ABSA model, presenting results that confirm the efficiency of our approach in advancing aspect-based sentiment classification within the chess domain. This research contributes to the area of game-playing by machines and shows the practical applicability of leveraging NLP techniques to understand the context of strategic games.
Related papers
- Predicting Chess Puzzle Difficulty with Transformers [0.0]
We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system.
The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques.
Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics.
arXiv Detail & Related papers (2024-10-14T20:39:02Z) - OSL-ActionSpotting: A Unified Library for Action Spotting in Sports Videos [56.393522913188704]
We introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics.
We successfully integrated three cornerstone action spotting methods into OSL-ActionSpotting, achieving performance metrics that match those of the original, disparates.
arXiv Detail & Related papers (2024-07-01T13:17:37Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - Information based explanation methods for deep learning agents -- with
applications on large open-source chess models [0.0]
This work presents the re-implementation of the concept detection methodology applied to AlphaZero.
We obtain results similar to those achieved on AlphaZero, while relying solely on open-source resources.
We also present a novel explainable AI (XAI) method, which is guaranteed to highlight exhaustively and exclusively the information used by the explained model.
arXiv Detail & Related papers (2023-09-18T12:08:14Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
We propose and analyse the use of a 2D frequency transform of the activation maps before transferring them.
This strategy enhances knowledge transferability in tasks such as scene recognition.
We publicly release the training and evaluation framework used along this paper at http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognition.
arXiv Detail & Related papers (2022-05-04T11:05:18Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
We quantify the non-transitivity in Chess through real-world data from human players.
There exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating.
arXiv Detail & Related papers (2021-10-22T12:15:42Z) - Chess2vec: Learning Vector Representations for Chess [0.0]
We generate and evaluate vector representations for chess pieces.
We uncover the latent structure of chess pieces and moves, as well as predict chess moves from chess positions.
arXiv Detail & Related papers (2020-11-02T14:50:48Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
Lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
We leverage semantic similarity metrics originally used for fine-tuning neural machine translation models.
Our model provides significant gains in both automatic and human evaluation over strong baselines.
arXiv Detail & Related papers (2020-10-24T04:30:02Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques.
We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading (MPRC) tasks.
arXiv Detail & Related papers (2020-10-05T23:09:20Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.