Predicting Chess Puzzle Difficulty with Transformers
- URL: http://arxiv.org/abs/2410.11078v1
- Date: Mon, 14 Oct 2024 20:39:02 GMT
- Title: Predicting Chess Puzzle Difficulty with Transformers
- Authors: Szymon Miłosz, Paweł Kapusta,
- Abstract summary: We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system.
The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques.
Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics.
- Score: 0.0
- License:
- Abstract: This study addresses the challenge of quantifying chess puzzle difficulty - a complex task that combines elements of game theory and human cognition and underscores its critical role in effective chess training. We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system. Unlike conventional chess engines that optimize for game outcomes, GlickFormer models human perception of tactical patterns and problem-solving complexity. The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques. This approach enables the capture of both spatial chess piece arrangements and move sequences, effectively modeling spatio-temporal relationships relevant to difficulty assessment. Experimental evaluation was conducted on a dataset of over 4 million chess puzzles. Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics. The algorithm's performance has also been recognized through its competitive results in the IEEE BigData 2024 Cup: Predicting Chess Puzzle Difficulty competition. The insights gained from this study have implications for personalized chess training and broader applications in educational technology and cognitive modeling.
Related papers
- Explore the Reasoning Capability of LLMs in the Chess Testbed [45.12891789312405]
We propose improving the reasoning capability of large language models in chess by integrating annotated strategy and tactic.
We finetune the LLaMA-3-8B model and compare it against state-of-the-art commercial language models in the task of selecting better chess moves.
arXiv Detail & Related papers (2024-11-11T01:42:56Z) - Mastering Chess with a Transformer Model [0.0]
We show that transformers endowed with a sufficiently expressive position representation can match existing chess-playing models at a fraction of the computational cost.
Our architecture, which we call the Chessformer, significantly outperforms AlphaZero in both playing strength and puzzle solving ability with 8x less computation.
arXiv Detail & Related papers (2024-09-18T19:05:21Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
This paper uses chess, a landmark planning problem in AI, to assess performance on a planning task.
ChessBench is a large-scale benchmark of 10 million chess games with legal move and value annotations (15 billion points) provided by Stockfish.
We show that, although a remarkably good approximation can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach.
arXiv Detail & Related papers (2024-02-07T00:36:24Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - Automated Graph Genetic Algorithm based Puzzle Validation for Faster
Game Desig [69.02688684221265]
This paper presents an evolutionary algorithm, empowered by expert-knowledge informeds, for solving logical puzzles in video games efficiently.
We discuss multiple variations of hybrid genetic approaches for constraint satisfaction problems that allow us to find a diverse set of near-optimal solutions for puzzles.
arXiv Detail & Related papers (2023-02-17T18:15:33Z) - Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw
Puzzles [67.39567701983357]
Video Anomaly Detection (VAD) is an important topic in computer vision.
Motivated by the recent advances in self-supervised learning, this paper addresses VAD by solving an intuitive yet challenging pretext task.
Our method outperforms state-of-the-art counterparts on three public benchmarks.
arXiv Detail & Related papers (2022-07-20T19:49:32Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
Learning from repeated play in a fixed zero-sum game is a classic problem in game theory and online learning.
We develop a single parameter-free algorithm that simultaneously enjoys favorable guarantees under three performance measures.
Our algorithm is based on a two-layer structure with a meta-algorithm learning over a group of black-box base-learners satisfying a certain property.
arXiv Detail & Related papers (2022-01-30T06:10:04Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
We quantify the non-transitivity in Chess through real-world data from human players.
There exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating.
arXiv Detail & Related papers (2021-10-22T12:15:42Z) - Determining Chess Game State From an Image [19.06796946564999]
This paper puts forth a new dataset synthesised from a 3D model that is an order of magnitude larger than existing ones.
A novel end-to-end chess recognition system is presented that combines traditional computer vision techniques with deep learning.
The described system achieves an error rate of 0.23% per square on the test set, 28 times better than the current state of the art.
arXiv Detail & Related papers (2021-04-30T13:02:13Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.