Heterogeneous Graph Neural Networks with Loss-decrease-aware Curriculum Learning
- URL: http://arxiv.org/abs/2405.06522v1
- Date: Fri, 10 May 2024 15:06:53 GMT
- Title: Heterogeneous Graph Neural Networks with Loss-decrease-aware Curriculum Learning
- Authors: Yili Wang,
- Abstract summary: Heterogeneous graph neural networks (HGNNs) have achieved excellent performance in handling heterogeneous information networks (HINs)
Previous methods have started to explore the use of curriculum learning strategy to train HGNNs.
We propose a novel loss-decrease-aware training schedule (LDTS)
- Score: 1.2224845909459847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, heterogeneous graph neural networks (HGNNs) have achieved excellent performance in handling heterogeneous information networks (HINs). Curriculum learning is a machine learning strategy where training examples are presented to a model in a structured order, starting with easy examples and gradually increasing difficulty, aiming to improve learning efficiency and generalization. To better exploit the rich information in HINs, previous methods have started to explore the use of curriculum learning strategy to train HGNNs. Specifically, these works utilize the absolute value of the loss at each training epoch to evaluate the learning difficulty of each training sample. However, the relative loss, rather than the absolute value of loss, reveals the learning difficulty. Therefore, we propose a novel loss-decrease-aware training schedule (LDTS). LDTS uses the trend of loss decrease between each training epoch to better evaluating the difficulty of training samples, thereby enhancing the curriculum learning of HGNNs for downstream tasks. Additionally, we propose a sampling strategy to alleviate training imbalance issues. Our method further demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities. We call our method Loss-decrease-aware Heterogeneous Graph Neural Networks (LDHGNN). The code is public at https://github.com/wangyili00/LDHGNN.
Related papers
- Stealing Training Graphs from Graph Neural Networks [54.52392250297907]
Graph Neural Networks (GNNs) have shown promising results in modeling graphs in various tasks.
As neural networks can memorize the training samples, the model parameters of GNNs have a high risk of leaking private training data.
We investigate a novel problem of stealing graphs from trained GNNs.
arXiv Detail & Related papers (2024-11-17T23:15:36Z) - Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
arXiv Detail & Related papers (2024-02-29T05:44:41Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - Unlearning Graph Classifiers with Limited Data Resources [39.29148804411811]
Controlled data removal is becoming an important feature of machine learning models for data-sensitive Web applications.
It is still largely unknown how to perform efficient machine unlearning of graph neural networks (GNNs)
Our main contribution is the first known nonlinear approximate graph unlearning method based on GSTs.
Our second contribution is a theoretical analysis of the computational complexity of the proposed unlearning mechanism.
Our third contribution are extensive simulation results which show that, compared to complete retraining of GNNs after each removal request, the new GST-based approach offers, on average, a 10.38x speed-up
arXiv Detail & Related papers (2022-11-06T20:46:50Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Scalable Consistency Training for Graph Neural Networks via
Self-Ensemble Self-Distillation [13.815063206114713]
We introduce a novel consistency training method to improve accuracy of graph neural networks (GNNs)
For a target node we generate different neighborhood expansions, and distill the knowledge of the average of the predictions to the GNN.
Our method approximates the expected prediction of the possible neighborhood samples and practically only requires a few samples.
arXiv Detail & Related papers (2021-10-12T19:24:42Z) - Scalable Graph Neural Network Training: The Case for Sampling [4.9201378771958675]
Graph Neural Networks (GNNs) are a new and increasingly popular family of deep neural network architectures to perform learning on graphs.
Training them efficiently is challenging due to the irregular nature of graph data.
Two different approaches have emerged in the literature: whole-graph and sample-based training.
arXiv Detail & Related papers (2021-05-05T20:44:10Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.