Language Interaction Network for Clinical Trial Approval Estimation
- URL: http://arxiv.org/abs/2405.06662v1
- Date: Fri, 26 Apr 2024 14:50:59 GMT
- Title: Language Interaction Network for Clinical Trial Approval Estimation
- Authors: Chufan Gao, Tianfan Fu, Jimeng Sun,
- Abstract summary: We introduce the Language Interaction Network (LINT), a novel approach that predicts trial outcomes using only the free-text descriptions of the trials.
We have rigorously tested LINT across three phases of clinical trials, where it achieved ROC-AUC scores of 0.770, 0.740, and 0.748.
- Score: 37.60098683485169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trial outcome prediction seeks to estimate the likelihood that a clinical trial will successfully reach its intended endpoint. This process predominantly involves the development of machine learning models that utilize a variety of data sources such as descriptions of the clinical trials, characteristics of the drug molecules, and specific disease conditions being targeted. Accurate predictions of trial outcomes are crucial for optimizing trial planning and prioritizing investments in a drug portfolio. While previous research has largely concentrated on small-molecule drugs, there is a growing need to focus on biologics-a rapidly expanding category of therapeutic agents that often lack the well-defined molecular properties associated with traditional drugs. Additionally, applying conventional methods like graph neural networks to biologics data proves challenging due to their complex nature. To address these challenges, we introduce the Language Interaction Network (LINT), a novel approach that predicts trial outcomes using only the free-text descriptions of the trials. We have rigorously tested the effectiveness of LINT across three phases of clinical trials, where it achieved ROC-AUC scores of 0.770, 0.740, and 0.748 for phases I, II, and III, respectively, specifically concerning trials involving biologic interventions.
Related papers
- TrialSynth: Generation of Synthetic Sequential Clinical Trial Data [21.799655542003677]
Variational Autoencoder (VAE) designed to address challenges of generating synthetic time-sequence clinical trial data.
Our experiments demonstrate that Trial Synth surpasses the performance of other comparable methods.
arXiv Detail & Related papers (2024-09-11T08:20:30Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
We propose TrialDura, a machine learning-based method that estimates the duration of clinical trials using multimodal data.
We encode them into Bio-BERT embeddings specifically tuned for biomedical contexts to provide a deeper and more relevant semantic understanding.
Our proposed model demonstrated superior performance with a mean absolute error (MAE) of 1.04 years and a root mean square error (RMSE) of 1.39 years compared to the other models.
arXiv Detail & Related papers (2024-04-20T02:12:59Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Contextual Constrained Learning for Dose-Finding Clinical Trials [102.8283665750281]
C3T-Budget is a contextual constrained clinical trial algorithm for dose-finding under both budget and safety constraints.
It recruits patients with consideration of the remaining budget, the remaining time, and the characteristics of each group.
arXiv Detail & Related papers (2020-01-08T11:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.