TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction
- URL: http://arxiv.org/abs/2404.13235v2
- Date: Thu, 18 Jul 2024 11:45:06 GMT
- Title: TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction
- Authors: Ling Yue, Jonathan Li, Sixue Xing, Md Zabirul Islam, Bolun Xia, Tianfan Fu, Jintai Chen,
- Abstract summary: We propose TrialDura, a machine learning-based method that estimates the duration of clinical trials using multimodal data.
We encode them into Bio-BERT embeddings specifically tuned for biomedical contexts to provide a deeper and more relevant semantic understanding.
Our proposed model demonstrated superior performance with a mean absolute error (MAE) of 1.04 years and a root mean square error (RMSE) of 1.39 years compared to the other models.
- Score: 19.084936647082632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The clinical trial process, a critical phase in drug development, is essential for developing new treatments. The primary goal of interventional clinical trials is to evaluate the safety and efficacy of drug-based treatments for specific diseases. However, these trials are often lengthy, labor-intensive, and expensive. The duration of a clinical trial significantly impacts overall costs, making efficient timeline management crucial for controlling budgets and ensuring the economic feasibility of research. To address this issue, We propose TrialDura, a machine learning-based method that estimates the duration of clinical trials using multimodal data, including disease names, drug molecules, trial phases, and eligibility criteria. Then, we encode them into Bio-BERT embeddings specifically tuned for biomedical contexts to provide a deeper and more relevant semantic understanding of clinical trial data. Finally, the model's hierarchical attention mechanism connects all of the embeddings to capture their interactions and predict clinical trial duration. Our proposed model demonstrated superior performance with a mean absolute error (MAE) of 1.04 years and a root mean square error (RMSE) of 1.39 years compared to the other models, indicating more accurate clinical trial duration prediction. Publicly available code can be found at: https://anonymous.4open.science/r/TrialDura-F196.
Related papers
- TrialSynth: Generation of Synthetic Sequential Clinical Trial Data [21.799655542003677]
Variational Autoencoder (VAE) designed to address challenges of generating synthetic time-sequence clinical trial data.
Our experiments demonstrate that Trial Synth surpasses the performance of other comparable methods.
arXiv Detail & Related papers (2024-09-11T08:20:30Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Automatically Labeling $200B Life-Saving Datasets: A Large Clinical Trial Outcome Benchmark [24.663798850232588]
This paper introduces Clinical Trial Outcome (CTO) dataset, the largest trial outcome dataset with around 479K clinical trials.
CTO's labels show unprecedented agreement with supervised clinical trial outcome labels from test split of the supervised TOP dataset, with a 91 F1.
arXiv Detail & Related papers (2024-06-13T04:23:35Z) - Language Interaction Network for Clinical Trial Approval Estimation [37.60098683485169]
We introduce the Language Interaction Network (LINT), a novel approach that predicts trial outcomes using only the free-text descriptions of the trials.
We have rigorously tested LINT across three phases of clinical trials, where it achieved ROC-AUC scores of 0.770, 0.740, and 0.748.
arXiv Detail & Related papers (2024-04-26T14:50:59Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Contextual Constrained Learning for Dose-Finding Clinical Trials [102.8283665750281]
C3T-Budget is a contextual constrained clinical trial algorithm for dose-finding under both budget and safety constraints.
It recruits patients with consideration of the remaining budget, the remaining time, and the characteristics of each group.
arXiv Detail & Related papers (2020-01-08T11:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.