論文の概要: Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling
- arxiv url: http://arxiv.org/abs/2405.06671v2
- Date: Wed, 15 May 2024 14:43:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 17:51:17.013547
- Title: Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling
- Title(参考訳): 大規模言語モデルのパラメータ効率向上による極端財務数値ラベリングの指導
- Authors: Subhendu Khatuya, Rajdeep Mukherjee, Akash Ghosh, Manjunath Hegde, Koustuv Dasgupta, Niloy Ganguly, Saptarshi Ghosh, Pawan Goyal,
- Abstract要約: 本稿では,財務文書に発生する関連する数字を対応するタグで自動的に注釈付けする問題について検討する。
本稿では,LoRAを用いたタスクに対するパラメータ効率のよい解を提案する。
提案するモデルであるFLAN-FinXCは、両方のデータセット上で新しい最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 29.84946857859386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata information to frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, FLAN-FinXC, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.
- Abstract(参考訳): 財務文書に発生する関連する数値(GAAP)を対応するXBRLタグで自動的に注釈付けする問題について検討する。
先行研究と異なり,Large Language Models (LLMs) の命令チューニングによる生成パラダイムを用いて,この極端な分類問題の解決の可能性を検討する。
この目的のために,測定メタデータ情報を利用して目標出力のフレーム化を行い,LoRAを用いてタスクに対するパラメータ効率のよい解を提案する。
最近リリースされた2つの財務数値ラベルデータセットについて実験を行った。
提案するモデルであるFLAN-FinXCは、両方のデータセット上で新しい最先端のパフォーマンスを実現し、いくつかの強力なベースラインを上回ります。
提案モデルでは,ゼロショットの能力と,最も頻度の低いタグを示すことによって,より優れたスコアを提示する。
また、XBRLタグを正しく予測できない場合でも、生成した出力は、ほとんどのケースで基幹構造とかなり重なる。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Large Language Models as Financial Data Annotators: A Study on Effectiveness and Efficiency [13.561104321425045]
LLM(Large Language Models)は、一般的なドメインデータセット上のデータアノテーションタスクにおいて、顕著なパフォーマンスを示す。
金融文書中の関係を抽出するための効率的なデータアノテータとしてのLCMの可能性について検討する。
我々は,現在最先端のLLMが,非熟練のクラウドワーカーに十分な代替手段であることを実証した。
論文 参考訳(メタデータ) (2024-03-26T23:32:52Z) - Large Language Model Routing with Benchmark Datasets [40.42044096089315]
通常、単一のモデルがすべてのタスクやユースケースで最高の精度を達成することはない。
そこで我々は,この選択のための"ルータ"モデルを学習するために,ベンチマークデータセットを再利用した新しい定式化を提案する。
本稿では,この問題をバイナリ分類タスクの集合に還元できることを示す。
論文 参考訳(メタデータ) (2023-09-27T17:08:40Z) - CELDA: Leveraging Black-box Language Model as Enhanced Classifier
without Labels [14.285609493077965]
クラスタリング強化線形識別分析(Linar Discriminative Analysis)は、非常に弱いスーパービジョン信号を用いてテキスト分類精度を向上させる新しい手法である。
我々のフレームワークは、LMモデルやデータラベルの重みや勾配にアクセスすることなく、正確な決定境界を描画する。
論文 参考訳(メタデータ) (2023-06-05T08:35:31Z) - Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization [34.85353544844499]
本稿では,DIASUMFACTというファクトエラーアノテーションを用いた最初のデータセットを提案する。
文レベルのマルチラベル分類問題として,ファクト・ファクト・エラー検出を定義する。
事前学習したエンコーダ-デコーダモデルを用いた候補ランキングによる教師なしモデルENDERANKERを提案する。
論文 参考訳(メタデータ) (2023-05-26T00:18:33Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Ground Truth Inference for Weakly Supervised Entity Matching [76.6732856489872]
弱監督タスクのための単純だが強力なラベル付けモデルを提案する。
次に、エンティティマッチングのタスクに特化してラベルモデルを調整します。
その結果,従来の手法よりもF1スコアが9%高い結果が得られた。
論文 参考訳(メタデータ) (2022-11-13T17:57:07Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - Fortunately, Discourse Markers Can Enhance Language Models for Sentiment
Analysis [13.149482582098429]
本稿では、感情伝達型談話マーカーを利用して、大規模に弱いラベル付きデータを生成することを提案する。
ファイナンスドメインを含むさまざまなベンチマークデータセットにアプローチの価値を示す。
論文 参考訳(メタデータ) (2022-01-06T12:33:47Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。