論文の概要: Analyzing Language Bias Between French and English in Conventional Multilingual Sentiment Analysis Models
- arxiv url: http://arxiv.org/abs/2405.06692v1
- Date: Tue, 7 May 2024 17:46:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:41:54.799340
- Title: Analyzing Language Bias Between French and English in Conventional Multilingual Sentiment Analysis Models
- Title(参考訳): 従来の多言語感性分析モデルにおけるフランス語と英語間の言語バイアスの分析
- Authors: Ethan Parker Wong, Faten M'hiri,
- Abstract要約: フランス語と英語の50~50のデータセットを考えると、言語バイアスが存在するかどうかを判断することを目指している。
Support Vector Machine (SVM) と Naive Bayes モデルを3つのバランスの取れたデータセットに適用することにより、多言語感情分類における潜在的なバイアスを明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the 'Bias Considerations in Bilingual Natural Language Processing' report by Statistics Canada, this study delves into potential biases in multilingual sentiment analysis between English and French. Given a 50-50 dataset of French and English, we aim to determine if there exists a language bias and explore how the incorporation of more diverse datasets in the future might affect the equity of multilingual Natural Language Processing (NLP) systems. By employing Support Vector Machine (SVM) and Naive Bayes models on three balanced datasets, we reveal potential biases in multilingual sentiment classification. Utilizing Fairlearn, a tool for assessing bias in machine learning models, our findings indicate nuanced outcomes. With French data outperforming English across accuracy, recall, and F1 score metrics in both models, hinting at a language bias favoring French. However, Fairlearn's metrics suggest that the SVM approaches equitable levels with a demographic parity ratio of 0.963, 0.989, and 0.985 for the three separate datasets, indicating near-equitable treatment across languages. In contrast, Naive Bayes demonstrates greater disparities, evidenced by a demographic parity ratio of 0.813, 0.908, and 0.961. These findings reveal the importance of developing equitable multilingual NLP systems, particularly as we anticipate the inclusion of more datasets in various languages in the future.
- Abstract(参考訳): カナダ統計局の「バイリンガル自然言語処理に関するバイアス考察」に触発された本研究は、英語とフランス語の多言語感情分析における潜在的なバイアスについて考察する。
フランス語と英語の50-50データセットを考えると、言語バイアスが存在するかどうかを判断し、将来、より多様なデータセットの組み入れが、多言語自然言語処理(NLP)システムのエクイティにどのように影響するかを検討することを目的としている。
Support Vector Machine (SVM) と Naive Bayes モデルを3つのバランスの取れたデータセットに適用することにより、多言語感情分類における潜在的なバイアスを明らかにする。
機械学習モデルにおけるバイアスを評価するツールであるFairlearnを利用することで、我々の発見はニュアンスな結果を示している。
フランス語のデータは正確さ、リコール、F1スコアの両方で英語を上回り、フランス語を好む言語バイアスを示唆している。
しかしながら、Fairlearnのメトリクスは、SVMが3つの異なるデータセットに対して0.963、0.989、0.985の比で同値なレベルに近づき、言語間でほぼ等価な扱いを示すことを示唆している。
対照的に、ネイブ・ベイズは0.813、0.908、0.961の人口比率で示される大きな格差を示している。
これらの結果から,多言語NLPシステムの開発の重要性が示唆された。
関連論文リスト
- Do Multilingual Large Language Models Mitigate Stereotype Bias? [9.31741279000585]
この研究は、英語、ドイツ語、フランス語、イタリア語、スペイン語で同じ大きさの6つのLLMを体系的に訓練する。
単言語モデルと比較して,多言語モデルの方がバイアスの低いだけでなく,予測精度も優れていることが観察された。
論文 参考訳(メタデータ) (2024-07-08T08:46:50Z) - CroissantLLM: A Truly Bilingual French-English Language Model [42.03897426049679]
英語とフランス語のトークンセットを事前訓練した1.3B言語モデルであるCroissantLLMを紹介する。
我々は、英語とフランス語の事前学習データ比率1:1で、本質的なバイリンガルモデルを訓練するアプローチを開拓した。
英語以外のパフォーマンスを評価するため、新しいベンチマークである FrenchBench を作成します。
論文 参考訳(メタデータ) (2024-02-01T17:17:55Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
勾配類似度に基づく言語グループ化手法GradSimを提案する。
3つの多言語ベンチマークデータセットに対する実験により、最大のパフォーマンス向上につながることが示された。
言語的特徴の他に、データセットのトピックは言語グループ化において重要な役割を果たす。
論文 参考訳(メタデータ) (2023-10-23T18:13:37Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - An Open Dataset and Model for Language Identification [84.15194457400253]
マクロ平均F1スコア0.93、偽陽性率0.033を201言語で達成するLIDモデルを提案する。
モデルとデータセットの両方を研究コミュニティに公開しています。
論文 参考訳(メタデータ) (2023-05-23T08:43:42Z) - DN at SemEval-2023 Task 12: Low-Resource Language Text Classification
via Multilingual Pretrained Language Model Fine-tuning [0.0]
感情分析のための既存のモデルやデータセットは、英語や中国語などの高リソース言語向けに開発されている。
AfriSenti-SemEval 2023 Shared Task 12は、低リソースのアフリカの言語に対する感情分析モデルを評価することで、このギャップを埋めることを目的としている。
そこで我々は,多言語XLM-Rモデルを多言語モデルに適用し,様々なデータに基づいて分類ヘッドを訓練した。
論文 参考訳(メタデータ) (2023-05-04T07:28:45Z) - A Commonsense-Infused Language-Agnostic Learning Framework for Enhancing
Prediction of Political Polarity in Multilingual News Headlines [0.0]
対象言語における推論知識を取得するために,翻訳と検索の手法を用いる。
次に、重要な推論を強調するために注意機構を使用します。
我々は、それぞれの政治的極性に注釈を付けた5つのヨーロッパ言語で62.6K以上の多言語ニュースの見出しを提示する。
論文 参考訳(メタデータ) (2022-12-01T06:07:01Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
一般的な英語事前学習コーパスには、かなりの量の非英語テキストが含まれていることが判明した。
これにより、大規模なデータセットで数十億の外国語トークンが生成される。
そして、これらの少数の非英語データでさえ、それらに基づいて訓練されたモデルの言語間移動を促進することを実証する。
論文 参考訳(メタデータ) (2022-04-17T23:56:54Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。