SUTRA: Scalable Multilingual Language Model Architecture
- URL: http://arxiv.org/abs/2405.06694v1
- Date: Tue, 7 May 2024 20:11:44 GMT
- Title: SUTRA: Scalable Multilingual Language Model Architecture
- Authors: Abhijit Bendale, Michael Sapienza, Steven Ripplinger, Simon Gibbs, Jaewon Lee, Pranav Mistry,
- Abstract summary: We introduce SUTRA, a multilingual Large Language Model architecture capable of understanding, reasoning, and generating text in over 50 languages.
Through extensive evaluations, SUTRA is demonstrated to surpass existing models like GPT-3.5, Llama2 by 20-30% on leading Massive Multitask Language Understanding (MMLU) benchmarks.
Our findings suggest that SUTRA not only fills pivotal gaps in multilingual model capabilities but also establishes a new benchmark for operational efficiency and scalability in AI applications.
- Score: 5.771289785515227
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we introduce SUTRA, multilingual Large Language Model architecture capable of understanding, reasoning, and generating text in over 50 languages. SUTRA's design uniquely decouples core conceptual understanding from language-specific processing, which facilitates scalable and efficient multilingual alignment and learning. Employing a Mixture of Experts framework both in language and concept processing, SUTRA demonstrates both computational efficiency and responsiveness. Through extensive evaluations, SUTRA is demonstrated to surpass existing models like GPT-3.5, Llama2 by 20-30% on leading Massive Multitask Language Understanding (MMLU) benchmarks for multilingual tasks. SUTRA models are also online LLMs that can use knowledge from the internet to provide hallucination-free, factual and up-to-date responses while retaining their multilingual capabilities. Furthermore, we explore the broader implications of its architecture for the future of multilingual AI, highlighting its potential to democratize access to AI technology globally and to improve the equity and utility of AI in regions with predominantly non-English languages. Our findings suggest that SUTRA not only fills pivotal gaps in multilingual model capabilities but also establishes a new benchmark for operational efficiency and scalability in AI applications.
Related papers
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKE is a benchmark for the adaptability of knowledge editing methods across five languages.
MLaKE aggregates fact chains from Wikipedia across languages and generates questions in both free-form and multiple-choice.
We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE.
arXiv Detail & Related papers (2024-04-07T15:23:28Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
Open-source large language models (LLMs) have gained significant strength across diverse fields.
In this work, we construct an open-source multilingual supervised fine-tuning dataset.
The resulting UltraLink dataset comprises approximately 1 million samples across five languages.
arXiv Detail & Related papers (2024-02-07T05:05:53Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
We extend the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages.
Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals.
We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the Natural Language Understanding tasks of intent detection and slot labelling.
arXiv Detail & Related papers (2022-12-20T17:34:25Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
Supervised deep learning-based approaches have been applied to task-oriented dialog and have proven to be effective for limited domain and language applications.
In practice, these approaches suffer from the drawbacks of domain-driven design and under-resourced languages.
This article proposes to investigate the cross-lingual transferability of using synergistically few-shot learning with prototypical neural networks and multilingual Transformers-based models.
arXiv Detail & Related papers (2022-07-19T09:55:04Z) - Overcoming Language Disparity in Online Content Classification with
Multimodal Learning [22.73281502531998]
Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks.
The development of advanced computational techniques and resources is disproportionately focused on the English language.
We explore the promise of incorporating the information contained in images via multimodal machine learning.
arXiv Detail & Related papers (2022-05-19T17:56:02Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z) - To What Degree Can Language Borders Be Blurred In BERT-based
Multilingual Spoken Language Understanding? [7.245261469258502]
We show that although a BERT-based multilingual Spoken Language Understanding (SLU) model works substantially well even on distant language groups, there is still a gap to the ideal multilingual performance.
We propose a novel BERT-based adversarial model architecture to learn language-shared and language-specific representations for multilingual SLU.
arXiv Detail & Related papers (2020-11-10T09:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.