論文の概要: CANAL -- Cyber Activity News Alerting Language Model: Empirical Approach vs. Expensive LLM
- arxiv url: http://arxiv.org/abs/2405.06772v1
- Date: Fri, 10 May 2024 18:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.666517
- Title: CANAL -- Cyber Activity News Alerting Language Model: Empirical Approach vs. Expensive LLM
- Title(参考訳): CANAL -- サイバー・アクティビティ・ニュース寛容言語モデル:実証的アプローチ vs. エクスペンシブ・LLM
- Authors: Urjitkumar Patel, Fang-Chun Yeh, Chinmay Gondhalekar,
- Abstract要約: 本研究は、ニュース記事からサイバー関連情報を解析・分類し、サイバー脅威モデリングのための新しい経験的枠組みを提案する。
このフレームワークのコアとなるのは、CANAL(Cyber Activity News Alerting Language Model)と呼ばれる細調整のBERTモデルです。
我々は、GPT-4、LLaMA、Zephyrを含むより大型で高価なLCMに対してCANALをベンチマークし、サイバーニュース分類におけるゼロから少数ショットの学習を強調した。
本稿では,ニュース記事から発生したサイバー信号を効率的に検出する戦略的なコンポーネントであるCyber Signal Discoveryモジュールを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In today's digital landscape, where cyber attacks have become the norm, the detection of cyber attacks and threats is critically imperative across diverse domains. Our research presents a new empirical framework for cyber threat modeling, adept at parsing and categorizing cyber-related information from news articles, enhancing real-time vigilance for market stakeholders. At the core of this framework is a fine-tuned BERT model, which we call CANAL - Cyber Activity News Alerting Language Model, tailored for cyber categorization using a novel silver labeling approach powered by Random Forest. We benchmark CANAL against larger, costlier LLMs, including GPT-4, LLaMA, and Zephyr, highlighting their zero to few-shot learning in cyber news classification. CANAL demonstrates superior performance by outperforming all other LLM counterparts in both accuracy and cost-effectiveness. Furthermore, we introduce the Cyber Signal Discovery module, a strategic component designed to efficiently detect emerging cyber signals from news articles. Collectively, CANAL and Cyber Signal Discovery module equip our framework to provide a robust and cost-effective solution for businesses that require agile responses to cyber intelligence.
- Abstract(参考訳): サイバー攻撃が一般的になった今日のデジタルランドスケープでは、サイバー攻撃と脅威の検出は、さまざまなドメインで極めて必須である。
我々の研究は、サイバー脅威モデリングのための新しい経験的枠組みを提示し、ニュース記事からサイバー関連情報を解析し分類し、市場ステークホルダーに対するリアルタイム警戒を強化する。
このフレームワークのコアとなるのは、CANAL - Cyber Activity News Alerting Language Modelと呼ばれる細調整のBERTモデルです。
我々は、GPT-4、LLaMA、Zephyrを含むより大型で高価なLCMに対してCANALをベンチマークし、サイバーニュース分類におけるゼロから少数ショットの学習を強調した。
CANALは、他のLLMと比較して、精度とコスト効率の両方で優れた性能を示す。
さらに,ニュース記事から発生したサイバー信号を効率的に検出する戦略的なコンポーネントであるCyber Signal Discoveryモジュールについても紹介する。
CANALとCyber Signal Discoveryモジュールは、サイバーインテリジェンスに対するアジャイル対応を必要とする企業に対して、堅牢で費用対効果の高いソリューションを提供するために、私たちのフレームワークに装備しています。
関連論文リスト
- Towards Characterizing Cyber Networks with Large Language Models [0.0]
我々は,Cyber Log Embeddings Model (CLEM)と呼ばれるプロトタイプツールを用いて,サイバーデータの潜在的特徴を用いて異常を発見する。
CLEMは、現実世界のプロダクションネットワークとIoT(Internet of Things)のサイバーセキュリティテストベッドの両方からのZeekネットワークトラフィックログに基づいてトレーニングされた。
論文 参考訳(メタデータ) (2024-11-11T16:09:13Z) - Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent Cyber Offense Capabilities [1.1359551336076306]
LLMエージェントの実際の攻撃能力を厳格に評価するフレームワークであるCatastrophic Cyber Capabilities Benchmark (3CB)を紹介する。
GPT-4o や Claude 3.5 Sonnet のようなフロンティアモデルでは,偵察や悪用といった攻撃的なタスクを実行できる。
我々のソフトウェアソリューションとそれに対応するベンチマークは、サイバー犯罪評価の迅速な改善能力と堅牢性の間のギャップを減らすための重要なツールを提供する。
論文 参考訳(メタデータ) (2024-10-10T12:06:48Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。