Shape Conditioned Human Motion Generation with Diffusion Model
- URL: http://arxiv.org/abs/2405.06778v1
- Date: Fri, 10 May 2024 19:06:41 GMT
- Title: Shape Conditioned Human Motion Generation with Diffusion Model
- Authors: Kebing Xue, Hyewon Seo,
- Abstract summary: We propose a Shape-conditioned Motion Diffusion model (SMD), which enables the generation of motion sequences directly in mesh format.
We also propose a Spectral-Temporal Autoencoder (STAE) to leverage cross-temporal dependencies within the spectral domain.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion synthesis is an important task in computer graphics and computer vision. While focusing on various conditioning signals such as text, action class, or audio to guide the generation process, most existing methods utilize skeleton-based pose representation, requiring additional skinning to produce renderable meshes. Given that human motion is a complex interplay of bones, joints, and muscles, considering solely the skeleton for generation may neglect their inherent interdependency, which can limit the variability and precision of the generated results. To address this issue, we propose a Shape-conditioned Motion Diffusion model (SMD), which enables the generation of motion sequences directly in mesh format, conditioned on a specified target mesh. In SMD, the input meshes are transformed into spectral coefficients using graph Laplacian, to efficiently represent meshes. Subsequently, we propose a Spectral-Temporal Autoencoder (STAE) to leverage cross-temporal dependencies within the spectral domain. Extensive experimental evaluations show that SMD not only produces vivid and realistic motions but also achieves competitive performance in text-to-motion and action-to-motion tasks when compared to state-of-the-art methods.
Related papers
- Motion-Oriented Compositional Neural Radiance Fields for Monocular Dynamic Human Modeling [10.914612535745789]
This paper introduces Motion-oriented Compositional Neural Radiance Fields (MoCo-NeRF)
MoCo-NeRF is a framework designed to perform free-viewpoint rendering of monocular human videos.
arXiv Detail & Related papers (2024-07-16T17:59:01Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - Single Motion Diffusion [33.81898532874481]
We present SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them.
SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation.
Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency.
arXiv Detail & Related papers (2023-02-12T13:02:19Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusion is a new denoising-diffusion-based framework for high-quality conditional human motion synthesis.
We present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework.
We demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature.
arXiv Detail & Related papers (2022-12-08T18:59:48Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
We propose a Motion Latent-based Diffusion model (MLD) to produce vivid motion sequences conforming to the given conditional inputs.
Our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks.
arXiv Detail & Related papers (2022-12-08T03:07:00Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Hierarchical Style-based Networks for Motion Synthesis [150.226137503563]
We propose a self-supervised method for generating long-range, diverse and plausible behaviors to achieve a specific goal location.
Our proposed method learns to model the motion of human by decomposing a long-range generation task in a hierarchical manner.
On large-scale skeleton dataset, we show that the proposed method is able to synthesise long-range, diverse and plausible motion.
arXiv Detail & Related papers (2020-08-24T02:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.