GENMO: A GENeralist Model for Human MOtion
- URL: http://arxiv.org/abs/2505.01425v1
- Date: Fri, 02 May 2025 17:59:55 GMT
- Title: GENMO: A GENeralist Model for Human MOtion
- Authors: Jiefeng Li, Jinkun Cao, Haotian Zhang, Davis Rempe, Jan Kautz, Umar Iqbal, Ye Yuan,
- Abstract summary: We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework.<n>Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals.<n>Our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control.
- Score: 64.16188966024542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion modeling traditionally separates motion generation and estimation into distinct tasks with specialized models. Motion generation models focus on creating diverse, realistic motions from inputs like text, audio, or keyframes, while motion estimation models aim to reconstruct accurate motion trajectories from observations like videos. Despite sharing underlying representations of temporal dynamics and kinematics, this separation limits knowledge transfer between tasks and requires maintaining separate models. We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework. Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals. Leveraging the synergy between regression and diffusion, GENMO achieves accurate global motion estimation while enabling diverse motion generation. We also introduce an estimation-guided training objective that exploits in-the-wild videos with 2D annotations and text descriptions to enhance generative diversity. Furthermore, our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control. This unified approach creates synergistic benefits: generative priors improve estimated motions under challenging conditions like occlusions, while diverse video data enhances generation capabilities. Extensive experiments demonstrate GENMO's effectiveness as a generalist framework that successfully handles multiple human motion tasks within a single model.
Related papers
- SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation [56.90807453045657]
SynMotion is a motion-customized video generation model that jointly leverages semantic guidance and visual adaptation.<n>At the semantic level, we introduce the dual-em semantic comprehension mechanism which disentangles subject and motion representations.<n>At the visual level, we integrate efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence.
arXiv Detail & Related papers (2025-06-30T10:09:32Z) - VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAM is a novel framework that instills an effective motion prior to video generators.<n>VideoJAM achieves state-of-the-art performance in motion coherence.<n>These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation.
arXiv Detail & Related papers (2025-02-04T17:07:10Z) - MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty [7.402769693163035]
This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP)
It integrates skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty.
Our model consistently outperforms existing generative techniques in accurately predicting long-term motions.
arXiv Detail & Related papers (2024-10-04T18:49:00Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) is a motion-centric, multi-modal framework that unifies mainstream motion generation tasks into a generalist model.
LMM tackles these challenges from three principled aspects.
arXiv Detail & Related papers (2024-04-01T17:55:11Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - Stochastic Multi-Person 3D Motion Forecasting [21.915057426589744]
We deal with the ignored real-world complexities in prior work on human motion forecasting.
Our framework is general; we instantiate it with different generative models.
Our approach produces diverse and accurate multi-person predictions, significantly outperforming the state of the art.
arXiv Detail & Related papers (2023-06-08T17:59:09Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
We introduce the task of action-driven human motion prediction.
It aims to predict multiple plausible future motions given a sequence of action labels and a short motion history.
arXiv Detail & Related papers (2022-05-31T08:38:07Z) - Task-Generic Hierarchical Human Motion Prior using VAEs [44.356707509079044]
A deep generative model that describes human motions can benefit a wide range of fundamental computer vision and graphics tasks.
We present a method for learning complex human motions independent of specific tasks using a combined global and local latent space.
We demonstrate the effectiveness of our hierarchical motion variational autoencoder in a variety of tasks including video-based human pose estimation.
arXiv Detail & Related papers (2021-06-07T23:11:42Z) - Dynamic Future Net: Diversified Human Motion Generation [31.987602940970888]
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality.
We present Dynamic Future Net, a new deep learning model where we explicitly focuses on the intrinsic motionity of human motion dynamics.
Our model can generate a large number of high-quality motions with arbitrary duration, and visuallyincing variations in both space and time.
arXiv Detail & Related papers (2020-08-25T02:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.