論文の概要: Deep MMD Gradient Flow without adversarial training
- arxiv url: http://arxiv.org/abs/2405.06780v1
- Date: Fri, 10 May 2024 19:10:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.600569
- Title: Deep MMD Gradient Flow without adversarial training
- Title(参考訳): 対向訓練を伴わない深部MDD勾配流
- Authors: Alexandre Galashov, Valentin de Bortoli, Arthur Gretton,
- Abstract要約: 本稿では,初期音源分布からターゲット分布への粒子輸送による生成モデルのための勾配流法を提案する。
最大平均離散度(MMD)の雑音適応型ワッサースタイン勾配は、ノイズのレベルの増加によって劣化するデータ分布について訓練する。
我々は,MDDがKL分岐の下位境界に置き換わる場合のアプローチの有効性を示す。
- 参考スコア(独自算出の注目度): 69.76417786943217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a gradient flow procedure for generative modeling by transporting particles from an initial source distribution to a target distribution, where the gradient field on the particles is given by a noise-adaptive Wasserstein Gradient of the Maximum Mean Discrepancy (MMD). The noise-adaptive MMD is trained on data distributions corrupted by increasing levels of noise, obtained via a forward diffusion process, as commonly used in denoising diffusion probabilistic models. The result is a generalization of MMD Gradient Flow, which we call Diffusion-MMD-Gradient Flow or DMMD. The divergence training procedure is related to discriminator training in Generative Adversarial Networks (GAN), but does not require adversarial training. We obtain competitive empirical performance in unconditional image generation on CIFAR10, MNIST, CELEB-A (64 x64) and LSUN Church (64 x 64). Furthermore, we demonstrate the validity of the approach when MMD is replaced by a lower bound on the KL divergence.
- Abstract(参考訳): 最大平均離散値 (MMD) の雑音適応ワッサースタイン勾配により粒子の勾配場が与えられるように, 初期分布から目標分布へ粒子を移動させることにより生成モデルを生成するための勾配流法を提案する。
雑音適応型MDDは、拡散確率モデルの雑音化において一般的に用いられる前方拡散過程によって得られる雑音のレベルが増大することにより、データ分布を劣化させる訓練を行う。
その結果,Diffusion-MMD-Gradient Flow (DMMD) と呼ばれるMDDグラディエントフローが一般化された。
分岐訓練はGAN(Generative Adversarial Networks)における差別者訓練と関係があるが、敵の訓練は不要である。
CIFAR10, MNIST, CELEB-A (64 x64) と LSUN Church (64 x64) の非条件画像生成における競合的経験的性能を得る。
さらに,MDD が KL 分岐の下位境界に置き換わる場合のアプローチの有効性を示す。
関連論文リスト
- Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
本稿では,MDPの線形性を維持する新しいDGMフレームワークであるBellman Diffusionを紹介する。
この結果から,ベルマン拡散は分布RLタスクにおける従来のヒストグラムベースベースラインよりも1.5倍高速に収束し,精度の高い画像生成装置であることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:53:23Z) - (De)-regularized Maximum Mean Discrepancy Gradient Flow [27.70783952195201]
本稿では,最大平均離散(DrMMD)とワッサーシュタイン勾配流の正則化を導入する。
DrMMDフローは、連続時間と離散時間の両方において、広範囲の目標に対して、同時にニア・グロバル収束を保証することができる。
我々の数値スキームは、フロー全体を通して適応的な非正規化スケジュールを使用して、離散化誤差と$chi2$の規則からの逸脱を最適にトレードオフする。
論文 参考訳(メタデータ) (2024-09-23T12:57:42Z) - Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment [56.609042046176555]
準最適雑音データマッピングは拡散モデルの遅い訓練につながる。
物理学における不和性現象からインスピレーションを得て,不和性拡散を提案する。
我々のアプローチは極めて単純で、各画像の拡散可能な領域を制限するために1行のコードしか必要としない。
論文 参考訳(メタデータ) (2024-06-18T06:20:42Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Diffusion Normalizing Flow [4.94950858749529]
本稿では微分方程式(SDE)に基づく拡散正規化フローという新しい生成モデルを提案する。
このアルゴリズムは、2つのニューラルSDEで構成されており、データに徐々にノイズを加えてガウスランダムノイズに変換するフォワードSDEと、データ分布からサンプルへのノイズを徐々に除去する後方SDEである。
提案アルゴリズムは,高次元データ密度推定と画像生成の両タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2021-10-14T17:41:12Z) - Denoising Diffusion Implicit Models [117.03720513930335]
DDPMと同様の訓練手順を施した反復的暗黙的確率モデルに対して,拡散暗黙モデル(DDIM)を提案する。
DDIMsは、DDPMsと比較して、壁面時間で10倍から50倍高速な高品質のサンプルを作成できる。
論文 参考訳(メタデータ) (2020-10-06T06:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。