GraphRelate3D: Context-Dependent 3D Object Detection with Inter-Object Relationship Graphs
- URL: http://arxiv.org/abs/2405.06782v1
- Date: Fri, 10 May 2024 19:18:02 GMT
- Title: GraphRelate3D: Context-Dependent 3D Object Detection with Inter-Object Relationship Graphs
- Authors: Mingyu Liu, Ekim Yurtsever, Marc Brede, Jun Meng, Walter Zimmer, Xingcheng Zhou, Bare Luka Zagar, Yuning Cui, Alois Knoll,
- Abstract summary: We introduce an object relation module, consisting of a graph generator and a graph neural network (GNN) to learn the spatial information from certain patterns to improve 3D object detection.
Our approach improves upon the baseline PV-RCNN on the KITTI validation set for the car class across easy, moderate, and hard difficulty levels by 0.82%, 0.74%, and 0.58%, respectively.
- Score: 13.071451453118783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and effective 3D object detection is critical for ensuring the driving safety of autonomous vehicles. Recently, state-of-the-art two-stage 3D object detectors have exhibited promising performance. However, these methods refine proposals individually, ignoring the rich contextual information in the object relationships between the neighbor proposals. In this study, we introduce an object relation module, consisting of a graph generator and a graph neural network (GNN), to learn the spatial information from certain patterns to improve 3D object detection. Specifically, we create an inter-object relationship graph based on proposals in a frame via the graph generator to connect each proposal with its neighbor proposals. Afterward, the GNN module extracts edge features from the generated graph and iteratively refines proposal features with the captured edge features. Ultimately, we leverage the refined features as input to the detection head to obtain detection results. Our approach improves upon the baseline PV-RCNN on the KITTI validation set for the car class across easy, moderate, and hard difficulty levels by 0.82%, 0.74%, and 0.58%, respectively. Additionally, our method outperforms the baseline by more than 1% under the moderate and hard levels BEV AP on the test server.
Related papers
- Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3D object detection often involves complicated training and testing pipelines.
Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds.
arXiv Detail & Related papers (2021-10-13T17:59:38Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection [0.0]
We propose an attention based feature aggregation technique in graph neural network (GNN) for detecting objects in LiDAR scan.
In each layer of the GNN, apart from the linear transformation which maps the per node input features to the corresponding higher level features, a per node masked attention is also performed.
The experiments on KITTI dataset show that our method yields comparable results for 3D object detection.
arXiv Detail & Related papers (2020-09-17T12:56:17Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
Scene graph generation (SGG) aims to detect objects in an image along with their pairwise relationships.
GPS-Net fully explores three properties for SGG: edge direction information, the difference in priority between nodes, and the long-tailed distribution of relationships.
GPS-Net achieves state-of-the-art performance on three popular databases: VG, OI, and VRD by significant gains under various settings and metrics.
arXiv Detail & Related papers (2020-03-29T07:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.