Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection
- URL: http://arxiv.org/abs/2009.08253v1
- Date: Thu, 17 Sep 2020 12:56:17 GMT
- Title: Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection
- Authors: Sumesh Thakur and Jiju Peethambaran
- Abstract summary: We propose an attention based feature aggregation technique in graph neural network (GNN) for detecting objects in LiDAR scan.
In each layer of the GNN, apart from the linear transformation which maps the per node input features to the corresponding higher level features, a per node masked attention is also performed.
The experiments on KITTI dataset show that our method yields comparable results for 3D object detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A robust and accurate 3D detection system is an integral part of autonomous
vehicles. Traditionally, a majority of 3D object detection algorithms focus on
processing 3D point clouds using voxel grids or bird's eye view (BEV). Recent
works, however, demonstrate the utilization of the graph neural network (GNN)
as a promising approach to 3D object detection. In this work, we propose an
attention based feature aggregation technique in GNN for detecting objects in
LiDAR scan. We first employ a distance-aware down-sampling scheme that not only
enhances the algorithmic performance but also retains maximum geometric
features of objects even if they lie far from the sensor. In each layer of the
GNN, apart from the linear transformation which maps the per node input
features to the corresponding higher level features, a per node masked
attention by specifying different weights to different nodes in its first ring
neighborhood is also performed. The masked attention implicitly accounts for
the underlying neighborhood graph structure of every node and also eliminates
the need of costly matrix operations thereby improving the detection accuracy
without compromising the performance. The experiments on KITTI dataset show
that our method yields comparable results for 3D object detection.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3D object detection often involves complicated training and testing pipelines.
Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds.
arXiv Detail & Related papers (2021-10-13T17:59:38Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection
from Point Clouds [8.906003527848636]
We propose Sparse Voxel-Graph Attention Network (SVGA-Net) to achieve comparable 3D detection tasks from raw LIDAR data.
SVGA-Net constructs the local complete graph within each divided 3D spherical voxel and global KNN graph through all voxels.
Experiments on KITTI detection benchmark demonstrate the efficiency of extending the graph representation to 3D object detection.
arXiv Detail & Related papers (2020-06-07T05:01:06Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.