論文の概要: Self-Consistent Recursive Diffusion Bridge for Medical Image Translation
- arxiv url: http://arxiv.org/abs/2405.06789v1
- Date: Fri, 10 May 2024 19:39:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.583315
- Title: Self-Consistent Recursive Diffusion Bridge for Medical Image Translation
- Title(参考訳): 医用画像翻訳のための自己整合再帰拡散ブリッジ
- Authors: Fuat Arslan, Bilal Kabas, Onat Dalmaz, Muzaffer Ozbey, Tolga Çukur,
- Abstract要約: ディノイング拡散モデル (DDM) は, 対向モデルよりも訓練安定性が向上し, 医用画像翻訳において近年注目を集めている。
医用画像翻訳の性能向上を目的とした自己整合反復拡散橋(SelfRDB)を提案する。
マルチコントラストMRIおよびMRI-CT翻訳における包括的解析は、SelfRDBが競合する手法に対して優れた性能を提供することを示している。
- 参考スコア(独自算出の注目度): 6.850683267295248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion models (DDM) have gained recent traction in medical image translation given improved training stability over adversarial models. DDMs learn a multi-step denoising transformation to progressively map random Gaussian-noise images onto target-modality images, while receiving stationary guidance from source-modality images. As this denoising transformation diverges significantly from the task-relevant source-to-target transformation, DDMs can suffer from weak source-modality guidance. Here, we propose a novel self-consistent recursive diffusion bridge (SelfRDB) for improved performance in medical image translation. Unlike DDMs, SelfRDB employs a novel forward process with start- and end-points defined based on target and source images, respectively. Intermediate image samples across the process are expressed via a normal distribution with mean taken as a convex combination of start-end points, and variance from additive noise. Unlike regular diffusion bridges that prescribe zero variance at start-end points and high variance at mid-point of the process, we propose a novel noise scheduling with monotonically increasing variance towards the end-point in order to boost generalization performance and facilitate information transfer between the two modalities. To further enhance sampling accuracy in each reverse step, we propose a novel sampling procedure where the network recursively generates a transient-estimate of the target image until convergence onto a self-consistent solution. Comprehensive analyses in multi-contrast MRI and MRI-CT translation indicate that SelfRDB offers superior performance against competing methods.
- Abstract(参考訳): ディノイング拡散モデル (DDM) は, 対向モデルよりも訓練安定性が向上し, 医用画像翻訳において近年注目を集めている。
DDMは多段階の復調変換を学習し、ランダムなガウスノイズ画像を目標モダリティ画像に漸進的にマッピングし、ソースモダリティ画像から定常的なガイダンスを受信する。
このデノゲーション変換はタスク関連ソース-ターゲット変換とは大きく異なるため、DDMはソース-モダリティガイダンスの弱さに悩まされる可能性がある。
本稿では,医用画像翻訳の性能向上を目的とした自己整合再帰拡散ブリッジ(SelfRDB)を提案する。
DDMとは異なり、SelfRDBは、それぞれターゲットイメージとソースイメージに基づいて定義された開始点と終了点を備えた、新しいフォワードプロセスを採用している。
プロセス全体にわたる中間画像サンプルは、平均値が終端点の凸結合としてとられ、加法ノイズからのばらつきで正規分布を介して表現される。
プロセスの中間点におけるゼロ分散と高分散を規定する正規拡散ブリッジとは違って,一般化性能の向上と2つのモード間の情報伝達を容易にするために,終点への分散を単調に増大させる新しいノイズスケジューリングを提案する。
各逆ステップにおけるサンプリング精度をさらに高めるために,ネットワークが自己整合性解に収束するまで,対象画像の過渡推定を再帰的に生成する新しいサンプリング手順を提案する。
マルチコントラストMRIおよびMRI-CT翻訳における包括的解析は、SelfRDBが競合する手法に対して優れた性能を提供することを示している。
関連論文リスト
- Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors [29.203951468436145]
拡散モデル(DM)は、最近、複雑な画像分布をモデル化する際、優れた機能を示した。
一般的な逆問題に対する後続サンプリングを行うマルコフ連鎖モンテカルロアルゴリズムを提案する。
提案手法の有効性を6つの逆問題に適用した。
論文 参考訳(メタデータ) (2024-05-29T05:42:25Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff は SISR のブラインド劣化に対処するための DM ベースのブラインドSR 手法である。
BlindDiffはMAPベースの最適化をDMにシームレスに統合する。
合成データセットと実世界のデータセットの両方の実験は、BlindDiffが最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2024-03-15T11:21:34Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
本研究は,画像生成時の絡み合った分布を明示的に最適化する,新しいスコア分解拡散モデルを提案する。
我々は、スコア関数の精製部分とエネルギー誘導を等しくし、多様体上の多目的最適化を可能にする。
SDDMは既存のSBDMベースの手法よりも優れており、I2Iベンチマークでは拡散ステップがはるかに少ない。
論文 参考訳(メタデータ) (2023-08-04T06:21:57Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - EDICT: Exact Diffusion Inversion via Coupled Transformations [13.996171129586731]
拡散過程(反転と呼ばれる)に入力画像を生成する初期ノイズベクトルを見つけることは重要な問題である。
本稿では,アフィン結合層からインスピレーションを得るための逆変換法であるEDICT(Exact Diffusion Inversion)を提案する。
EDICTは、2つの結合ノイズベクトルを維持することにより、実画像とモデル生成画像の数学的に正確な逆変換を可能にする。
論文 参考訳(メタデータ) (2022-11-22T18:02:49Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
拡散モデル(DM)は、最近、様々な領域で生成モデリングを行うためのSoTAツールとして登場した。
本稿では、プログレッシブ信号変換が可能なDMの一般化されたファミリであるf-DMを提案する。
我々は、ダウンサンプリング、ぼやけ、学習された変換を含む様々な機能を持つ画像生成タスクにf-DMを適用した。
論文 参考訳(メタデータ) (2022-10-10T18:49:25Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
ソース・トゥ・ターゲット・モダリティ変換による画像の欠落の計算は、医用画像プロトコルの多様性を向上させることができる。
本稿では, 医用画像翻訳の性能向上のための逆拡散モデルであるSynDiffを提案する。
論文 参考訳(メタデータ) (2022-07-17T15:53:24Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.9895793818721335]
ディープMRI再構成は、完全にサンプリングされたデータと整合したイメージを復元するために、アンサンプされた取得をデエイリアス化する条件付きモデルで一般的に行われる。
非条件モデルは、画像演算子に関連する領域シフトに対する信頼性を向上させるために、演算子から切り離された生成画像の事前を学習する。
本稿では,MRI 再構成に先立つ適応拡散 AdaDiff を提案する。
論文 参考訳(メタデータ) (2022-07-12T22:45:08Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。