LLM-Generated Black-box Explanations Can Be Adversarially Helpful
- URL: http://arxiv.org/abs/2405.06800v3
- Date: Fri, 11 Oct 2024 17:16:30 GMT
- Title: LLM-Generated Black-box Explanations Can Be Adversarially Helpful
- Authors: Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, Zining Zhu,
- Abstract summary: Large Language Models (LLMs) help us solve and understand complex problems by acting as digital assistants.
Our research uncovers a hidden risk tied to this approach, which we call *adversarial helpfulness*.
This happens when an LLM's explanations make a wrong answer look right, potentially leading people to trust incorrect solutions.
- Score: 16.49758711633611
- License:
- Abstract: Large Language Models (LLMs) are becoming vital tools that help us solve and understand complex problems by acting as digital assistants. LLMs can generate convincing explanations, even when only given the inputs and outputs of these problems, i.e., in a ``black-box'' approach. However, our research uncovers a hidden risk tied to this approach, which we call *adversarial helpfulness*. This happens when an LLM's explanations make a wrong answer look right, potentially leading people to trust incorrect solutions. In this paper, we show that this issue affects not just humans, but also LLM evaluators. Digging deeper, we identify and examine key persuasive strategies employed by LLMs. Our findings reveal that these models employ strategies such as reframing the questions, expressing an elevated level of confidence, and cherry-picking evidence to paint misleading answers in a credible light. To examine if LLMs are able to navigate complex-structured knowledge when generating adversarially helpful explanations, we create a special task based on navigating through graphs. Most LLMs are not able to find alternative paths along simple graphs, indicating that their misleading explanations aren't produced by only logical deductions using complex knowledge. These findings shed light on the limitations of the black-box explanation setting and allow us to provide advice on the safe usage of LLMs.
Related papers
- Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
Knowledge documents for large language models (LLMs) may conflict with the memory of LLMs due to outdated or incorrect knowledge.
We construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering.
arXiv Detail & Related papers (2024-04-04T16:40:11Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
Large Language Models (LLMs) have been found to have difficulty knowing they do not possess certain knowledge.
Retrieval Augmentation (RA) has been extensively studied to mitigate LLMs' hallucinations.
We propose several methods to enhance LLMs' perception of knowledge boundaries and show that they are effective in reducing overconfidence.
arXiv Detail & Related papers (2024-02-18T04:57:19Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism [0.0]
Large language models (LLMs) have demonstrated impressive language understanding and generation capabilities.
These models are not flawless and often produce responses that contain errors or misinformation.
We propose a refusal mechanism that instructs LLMs to refuse to answer challenging questions in order to avoid errors.
arXiv Detail & Related papers (2023-11-02T07:20:49Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
Large Language Models (LLMs) have shown great potential in Natural Language Processing (NLP) tasks.
Recent literature reveals that LLMs generate nonfactual responses intermittently.
We propose a novel self-detection method to detect which questions that a LLM does not know that are prone to generate nonfactual results.
arXiv Detail & Related papers (2023-10-27T06:22:14Z) - Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong [35.64962031447787]
Large Language Models (LLMs) are increasingly used for accessing information on the web.
Our experiments with 80 crowdworkers compare language models with search engines (information retrieval systems) at facilitating fact-checking.
Users reading LLM explanations are significantly more efficient than those using search engines while achieving similar accuracy.
arXiv Detail & Related papers (2023-10-19T08:09:58Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
We focus on long-form question answering (LFQA) because it has several practical and impactful applications.
We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting.
arXiv Detail & Related papers (2023-09-15T07:22:56Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.